Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 214(Pt 2): 113798, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35810819

RESUMEN

A coordinated observational and modelling campaign targeting biogenic aerosols in the air was performed during spring 2021 at two locations in Northern Europe: Helsinki (Finland) and Siauliai (Lithuania), approximately 500 km from each other in north-south direction. The campaign started on March 1, 2021 in Siauliai (12 March in Helsinki) and continued till mid-May in Siauliai (end of May in Helsinki), thus recording the transition of the atmospheric biogenic aerosols profile from winter to summer. The observations included a variety of samplers working on different principles. The core of the program was based on 2- and 2.4--hourly sampling in Helsinki and Siauliai, respectively, with sticky slides (Hirst 24-h trap in Helsinki, Rapid-E slides in Siauliai). The slides were subsequently processed extracting the DNA from the collected aerosols, which was further sequenced using the 3-rd generation sequencing technology. The core sampling was accompanied with daily and daytime sampling using standard filter collectors. The hourly aerosol concentrations at the Helsinki monitoring site were obtained with a Poleno flow cytometer, which could recognize some of the aerosol types. The sampling campaign was supported by numerical modelling. For every sample, SILAM model was applied to calculate its footprint and to predict anthropogenic and natural aerosol concentrations, at both observation sites. The first results confirmed the feasibility of the DNA collection by the applied techniques: all but one delivered sufficient amount of DNA for the following analysis, in over 40% of the cases sufficient for direct DNA sequencing without the PCR step. A substantial variability of the DNA yield has been noticed, generally not following the diurnal variations of the total-aerosol concentrations, which themselves showed variability not related to daytime. An expected upward trend of the biological material amount towards summer was observed but the day-to-day variability was large. The campaign DNA analysis produced the first high-resolution dataset of bioaerosol composition in the North-European spring. It also highlighted the deficiency of generic DNA databases in applications to atmospheric biota: about 40% of samples were not identified with standard bioinformatic methods.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Atmósfera/análisis , Monitoreo del Ambiente/métodos , Europa (Continente) , Estaciones del Año
2.
Indoor Air ; 32(11): e13165, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36437671

RESUMEN

COVID-19 has highlighted the need for indoor risk-reduction strategies. Our aim is to provide information about the virus dispersion and attempts to reduce the infection risk. Indoor transmission was studied simulating a dining situation in a restaurant. Aerosolized Phi6 viruses were detected with several methods. The aerosol dispersion was modeled by using the Large-Eddy Simulation (LES) technique. Three risk-reduction strategies were studied: (1) augmenting ventilation with air purifiers, (2) spatial partitioning with dividers, and (3) combination of 1 and 2. In all simulations infectious viruses were detected throughout the space proving the existence long-distance aerosol transmission indoors. Experimental cumulative virus numbers and LES dispersion results were qualitatively similar. The LES results were further utilized to derive the evolution of infection probability. Air purifiers augmenting the effective ventilation rate by 65% reduced the spatially averaged infection probability by 30%-32%. This relative reduction manifests with approximately 15 min lag as aerosol dispersion only gradually reaches the purifier units. Both viral findings and LES results confirm that spatial partitioning has a negligible effect on the mean infection-probability indoors, but may affect the local levels adversely. Exploitation of high-resolution LES jointly with microbiological measurements enables an informative interpretation of the experimental results and facilitates a more complete risk assessment.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Humanos , SARS-CoV-2 , Restaurantes , Contaminación del Aire Interior/análisis , Aerosoles y Gotitas Respiratorias
3.
Indoor Air ; 32(10): e13118, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36305066

RESUMEN

SARS-CoV-2 has been detected both in air and on surfaces, but questions remain about the patient-specific and environmental factors affecting virus transmission. Additionally, more detailed information on viral sampling of the air is needed. This prospective cohort study (N = 56) presents results from 258 air and 252 surface samples from the surroundings of 23 hospitalized and eight home-treated COVID-19 index patients between July 2020 and March 2021 and compares the results between the measured environments and patient factors. Additionally, epidemiological and experimental investigations were performed. The proportions of qRT-PCR-positive air (10.7% hospital/17.6% homes) and surface samples (8.8%/12.9%) showed statistical similarity in hospital and homes. Significant SARS-CoV-2 air contamination was observed in a large (655.25 m3 ) mechanically ventilated (1.67 air changes per hour, 32.4-421 L/s/patient) patient hall even with only two patients present. All positive air samples were obtained in the absence of aerosol-generating procedures. In four cases, positive environmental samples were detected after the patients had developed a neutralizing IgG response. SARS-CoV-2 RNA was detected in the following particle sizes: 0.65-4.7 µm, 7.0-12.0 µm, >10 µm, and <100 µm. Appropriate infection control against airborne and surface transmission routes is needed in both environments, even after antibody production has begun.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/epidemiología , ARN Viral , Estudios Prospectivos , Aerosoles y Gotitas Respiratorias
4.
Environ Sci Technol ; 55(20): 13677-13686, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34623135

RESUMEN

We analyzed pollution plumes originating from ships using liquefied natural gas (LNG) as a fuel. Measurements were performed at a station located on the Utö island in the Baltic Sea during 2015-2021 when vessels passed the station along an adjacent shipping lane and the wind direction allowed the measurements. The ratio of the measured concentration peaks ΔCH4/ΔCO2 ranged from 1% to 9% and from 0.1% to 0.5% for low and high pressure dual fuel engines, respectively. The ratio of the measured concentration peaks of ΔNOx/ΔCO2 varied between 0.5‰ and 8.7‰, which was not explained by engine type. The results were consistent with previously measured on-board or test-bed values for the corresponding ratios of emissions. While the methane emissions from high pressure dual fuel engines were found to fulfill the goal of reducing the climatic impacts of shipping, the emissions originating from low pressure dual fuel engines were found to be substantially high, with a potential for increased climatic impacts compared with using traditional marine fuels. Taking only the global warming potential into account, we can suggest a limit value for the methane emissions; the ratio of the emissions ΔCH4/ΔCO2 originating from LNG powered ships should not exceed 1.4%.


Asunto(s)
Contaminantes Atmosféricos , Gas Natural , Contaminantes Atmosféricos/análisis , Países Bálticos , Metano , Navíos , Emisiones de Vehículos/análisis
5.
Sensors (Basel) ; 20(1)2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-31905686

RESUMEN

Missing data has been a challenge in air quality measurement. In this study, we develop an input-adaptive proxy, which selects input variables of other air quality variables based on their correlation coefficients with the output variable. The proxy uses ordinary least squares regression model with robust optimization and limits the input variables to a maximum of three to avoid overfitting. The adaptive proxy learns from the data set and generates the best model evaluated by adjusted coefficient of determination (adjR2). In case of missing data in the input variables, the proposed adaptive proxy then uses the second-best model until all the missing data gaps are filled up. We estimated black carbon (BC) concentration by using the input-adaptive proxy in two sites in Helsinki, which respectively represent street canyon and urban background scenario, as a case study. Accumulation mode, traffic counts, nitrogen dioxide and lung deposited surface area are found as input variables in models with the top rank. In contrast to traditional proxy, which gives 20-80% of data, the input-adaptive proxy manages to give full continuous BC estimation. The newly developed adaptive proxy also gives generally accurate BC (street canyon: adjR2 = 0.86-0.94; urban background: adjR2 = 0.74-0.91) depending on different seasons and day of the week. Due to its flexibility and reliability, the adaptive proxy can be further extend to estimate other air quality parameters. It can also act as an air quality virtual sensor in support with on-site measurements in the future.

6.
Sensors (Basel) ; 17(12)2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29244715

RESUMEN

Inexpensive aerosol sensors have been considered as a complementary option to address the issue of expensive but low spatial coverage air quality monitoring networks. However, the accuracy and response characteristics of these sensors is poorly documented. In this study, inexpensive Shinyei PPD42NS and PPD60PV sensors were evaluated using a novel laboratory evaluation method. A continuously changing monodisperse size distribution of particles was generated using a Vibrating Orifice Aerosol Generator. Furthermore, the laboratory results were validated in a field experiment. The laboratory tests showed that both of the sensors responded to particulate mass (PM) concentration stimulus, rather than number concentration. The highest detection efficiency for the PPD42NS was within particle size range of 2.5-4 µm, and the respective optimal size range for the PPD60PV was 0.7-1 µm. The field test yielded high PM correlations (R² = 0.962 and R² = 0.986) for viable detection ranges of 1.6-5 and 0.3-1.6 µm, when compared to a medium cost optical dust monitor. As the size distribution of atmospheric particles tends to be bimodal, it is likely that indicatively valid results could be obtained for the PM10-2.5 size fraction (particulate mass in size range 2.5-10 µm) with the PPD42NS sensor. Respectively, the PPD60PV could possibly be used to measure the PM2.5 size fraction (particulate mass in size below 2.5 µm).

7.
Heliyon ; 9(2): e13565, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36879750

RESUMEN

Surrogate viruses theoretically provide an opportunity to study the viral spread in an indoor environment, a highly needed understanding during the pandemic, in a safe manner to humans and the environment. However, the safety of surrogate viruses for humans as an aerosol at high concentrations has not been established. In this study, Phi6 surrogate was aerosolized at high concentration (Particulate matter2.5: ∼1018 µg m-3) in the studied indoor space. Participants were closely followed for any symptoms. We measured the bacterial endotoxin concentration of the virus solution used for aerosolization as well as the concentration in the room air containing the aerosolized viruses. In addition, we measured how the bacterial endotoxin concentration of the sample was affected by different traditional virus purification procedures. Despite the purification, bacterial endotoxin concentration of the Phi6 was high (350 EU/ml in solution used for aerosols) with both (two) purification protocols. Bacterial endotoxins were also detected in aerosolized form, but below the occupational exposure limit of 90 EU/m3. Despite these concerns, no symptoms were observed in exposed humans when they were using personal protective equipment. In the future, purification protocols should be developed to reduce associated bacterial endotoxin levels in enveloped bacterial virus specimens to ensure even safer research use of surrogate viruses.

8.
Phys Fluids (1994) ; 34(1): 015124, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35340682

RESUMEN

High-resolution large-eddy simulation (LES) is exploited to study indoor air turbulence and its effect on the dispersion of respiratory virus-laden aerosols and subsequent transmission risks. The LES modeling is carried out with unprecedented accuracy and subsequent analysis with novel mathematical robustness. To substantiate the physical relevance of the LES model under realistic ventilation conditions, a set of experimental aerosol concentration measurements are carried out, and their results are used to successfully validate the LES model results. The obtained LES dispersion results are subjected to pathogen exposure and infection probability analysis in accordance with the Wells-Riley model, which is here mathematically extended to rely on LES-based space- and time-dependent concentration fields. The methodology is applied to assess two dissimilar approaches to reduce transmission risks: a strategy to augment the indoor ventilation capacity with portable air purifiers and a strategy to utilize partitioning by exploiting portable space dividers. The LES results show that use of air purifiers leads to greater reduction in absolute risks compared to the analytical Wells-Riley model, which fails to predict the original risk level. However, the two models do agree on the relative risk reduction. The spatial partitioning strategy is demonstrated to have an undesirable effect when employed without other measures, but may yield desirable outcomes with targeted air purifier units. The study highlights the importance of employing accurate indoor turbulence modeling when evaluating different risk-reduction strategies.

9.
Environ Pollut ; 241: 96-105, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29803029

RESUMEN

The vertical profiles of lung deposited surface area (LDSA) concentration were measured in an urban street canyon in Helsinki, Finland, by using an unmanned aerial system (UAS) as a moving measurement platform. The street canyon can be classified as an avenue canyon with an aspect ratio of 0.45 and the UAS was a multirotor drone especially modified for emission measurements. In the experiments of this study, the drone was equipped with a small diffusion charge sensor capable of measuring the alveolar LDSA concentration of particles. The drone measurements were conducted during two days on the same spatial location at the kerbside of the street canyon by flying vertically from the ground level up to an altitude of 50 m clearly above the rooftop level (19 m) of the nearest buildings. The drone data were supported by simultaneous measurements and by a two-week period of measurements at nearby locations with various instruments. The results showed that the averaged LDSA concentrations decreased approximately from 60 µm2/cm3 measured close to the ground level to 36-40 µm2/cm3 measured close to the rooftop level of the street canyon, and further to 16-26 µm2/cm3 measured at 50 m. The high-resolution measurement data enabled an accurate analysis of the functional form of vertical profiles both in the street canyon and above the rooftop level. In both of these regions, exponential fits were used and the parameters obtained from the fits were thoroughly compared to the values found in literature. The results of this study indicated that the role of turbulent mixing caused by traffic was emphasized compared to the street canyon vortex as a driving force of the dispersion. In addition, the vertical profiles above the rooftop level showed a similar exponential decay compared to the profiles measured inside the street canyon.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Finlandia , Modelos Teóricos , Emisiones de Vehículos/análisis , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA