Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(19): e2213696120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126682

RESUMEN

To better understand the genetic basis of heart disease, we identified a variant in the Flightless-I homolog (FLII) gene that generates a R1243H missense change and predisposes to cardiac remodeling across multiple previous human genome-wide association studies (GWAS). Since this gene is of unknown function in the mammalian heart we generated gain- and loss-of-function genetically altered mice, as well as knock-in mice with the syntenic R1245H amino acid substitution, which showed that Flii protein binds the sarcomeric actin thin filament and influences its length. Deletion of Flii from the heart, or mice with the R1245H amino acid substitution, show cardiomyopathy due to shortening of the actin thin filaments. Mechanistically, Flii is a known actin binding protein that we show associates with tropomodulin-1 (TMOD1) to regulate sarcomere thin filament length. Indeed, overexpression of leiomodin-2 in the heart, which lengthens the actin-containing thin filaments, partially rescued disease due to heart-specific deletion of Flii. Collectively, the identified FLII human variant likely increases cardiomyopathy risk through an alteration in sarcomere structure and associated contractile dynamics, like other sarcomere gene-based familial cardiomyopathies.


Asunto(s)
Actinas , Cardiomiopatías , Humanos , Animales , Ratones , Actinas/metabolismo , Sarcómeros/metabolismo , Estudio de Asociación del Genoma Completo , Citoesqueleto de Actina/metabolismo , Cardiomiopatías/metabolismo , Mamíferos/genética , Proteínas de Microfilamentos/metabolismo , Transactivadores/metabolismo , Tropomodulina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas Musculares/metabolismo
2.
J Biol Chem ; 299(12): 105426, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37926281

RESUMEN

S-palmitoylation is a reversible lipid modification catalyzed by 23 S-acyltransferases with a conserved zinc finger aspartate-histidine-histidine-cysteine (zDHHC) domain that facilitates targeting of proteins to specific intracellular membranes. Here we performed a gain-of-function screen in the mouse and identified the Golgi-localized enzymes zDHHC3 and zDHHC7 as regulators of cardiac hypertrophy. Cardiomyocyte-specific transgenic mice overexpressing zDHHC3 show cardiac disease, and S-acyl proteomics identified the small GTPase Rac1 as a novel substrate of zDHHC3. Notably, cardiomyopathy and congestive heart failure in zDHHC3 transgenic mice is preceded by enhanced Rac1 S-palmitoylation, membrane localization, activity, downstream hypertrophic signaling, and concomitant induction of all Rho family small GTPases whereas mice overexpressing an enzymatically dead zDHHC3 mutant show no discernible effect. However, loss of Rac1 or other identified zDHHC3 targets Gαq/11 or galectin-1 does not diminish zDHHC3-induced cardiomyopathy, suggesting multiple effectors and pathways promoting decompensation with sustained zDHHC3 activity. Genetic deletion of Zdhhc3 in combination with Zdhhc7 reduces cardiac hypertrophy during the early response to pressure overload stimulation but not over longer time periods. Indeed, cardiac hypertrophy in response to 2 weeks of angiotensin-II infusion is not diminished by Zdhhc3/7 deletion, again suggesting other S-acyltransferases or signaling mechanisms compensate to promote hypertrophic signaling. Taken together, these data indicate that the activity of zDHHC3 and zDHHC7 at the cardiomyocyte Golgi promote Rac1 signaling and maladaptive cardiac remodeling, but redundant signaling effectors compensate to maintain cardiac hypertrophy with sustained pathological stimulation in the absence of zDHHC3/7.


Asunto(s)
Cardiomiopatías , Miocitos Cardíacos , Animales , Ratones , Aciltransferasas/genética , Aciltransferasas/metabolismo , Cardiomegalia/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Histidina/metabolismo , Lipoilación , Ratones Transgénicos , Miocitos Cardíacos/metabolismo
3.
Clin Sci (Lond) ; 133(4): 583-595, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30777884

RESUMEN

Recent reports, including ours, have indicated that microRNA (miR)-33 located within the intron of sterol regulatory element binding protein (SREBP) 2 controls cholesterol homeostasis and can be a potential therapeutic target for the treatment of atherosclerosis. Here, we show that SPAST, which encodes a microtubule-severing protein called SPASTIN, was a novel target gene of miR-33 in human. Actually, the miR-33 binding site in the SPAST 3'-UTR is conserved not in mice but in mid to large mammals, and it is impossible to clarify the role of miR-33 on SPAST in mice. We demonstrated that inhibition of miR-33a, a major form of miR-33 in human neurons, via locked nucleic acid (LNA)-anti-miR ameliorated the pathological phenotype in hereditary spastic paraplegia (HSP)-SPG4 patient induced pluripotent stem cell (iPSC)-derived cortical neurons. Thus, miR-33a can be a potential therapeutic target for the treatment of HSP-SPG4.


Asunto(s)
Terapia Genética/métodos , Células Madre Pluripotentes Inducidas/metabolismo , MicroARNs/genética , Células-Madre Neurales/metabolismo , Neuritas/metabolismo , Oligonucleótidos/genética , Paraplejía Espástica Hereditaria/terapia , Espastina/genética , Regiones no Traducidas 3' , Sitios de Unión , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/patología , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Células-Madre Neurales/patología , Neuritas/patología , Neurogénesis , Oligonucleótidos/metabolismo , Fenotipo , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo , Paraplejía Espástica Hereditaria/patología , Espastina/metabolismo
4.
Circ Res ; 120(5): 835-847, 2017 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-27920122

RESUMEN

RATIONALE: Heart failure and atherosclerosis share the underlying mechanisms of chronic inflammation followed by fibrosis. A highly conserved microRNA (miR), miR-33, is considered as a potential therapeutic target for atherosclerosis because it regulates lipid metabolism and inflammation. However, the role of miR-33 in heart failure remains to be elucidated. OBJECTIVE: To clarify the role of miR-33 involved in heart failure. METHODS AND RESULTS: We first investigated the expression levels of miR-33a/b in human cardiac tissue samples with dilated cardiomyopathy. Increased expression of miR-33a was associated with improving hemodynamic parameters. To clarify the role of miR-33 in remodeling hearts, we investigated the responses to pressure overload by transverse aortic constriction in miR-33-deficient (knockout [KO]) mice. When mice were subjected to transverse aortic constriction, miR-33 expression levels were significantly upregulated in wild-type left ventricles. There was no difference in hypertrophic responses between wild-type and miR-33KO hearts, whereas cardiac fibrosis was ameliorated in miR-33KO hearts compared with wild-type hearts. Despite the ameliorated cardiac fibrosis, miR-33KO mice showed impaired systolic function after transverse aortic constriction. We also found that cardiac fibroblasts were mainly responsible for miR-33 expression in the heart. Deficiency of miR-33 impaired cardiac fibroblast proliferation, which was considered to be caused by altered lipid raft cholesterol content. Moreover, cardiac fibroblast-specific miR-33-deficient mice also showed decreased cardiac fibrosis induced by transverse aortic constriction as systemic miR-33KO mice. CONCLUSION: Our results demonstrate that miR-33 is involved in cardiac remodeling, and it preserves lipid raft cholesterol content in fibroblasts and maintains adaptive fibrotic responses in the remodeling heart.


Asunto(s)
Colesterol/metabolismo , Microdominios de Membrana/metabolismo , MicroARNs/metabolismo , Miocardio/metabolismo , Miocardio/patología , Remodelación Ventricular/fisiología , Adulto , Anciano , Animales , Células Cultivadas , Femenino , Fibroblastos/metabolismo , Fibroblastos/fisiología , Fibrosis/metabolismo , Fibrosis/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Ratas , Ratas Sprague-Dawley
5.
Arterioscler Thromb Vasc Biol ; 38(10): 2460-2473, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30354203

RESUMEN

Objective- Atherosclerosis is a common disease caused by a variety of metabolic and inflammatory disturbances. MicroRNA (miR)-33a within SREBF2 (sterol regulatory element-binding factor 2) is a potent target for treatment of atherosclerosis through regulating both aspects; however, the involvement of miR-33b within SREBF1 remains largely unknown. Although their host genes difference could lead to functional divergence of miR-33a/b, we cannot dissect the roles of miR-33a/b in vivo because of lack of miR-33b sequences in mice, unlike human. Approach and Results- Here, we analyzed the development of atherosclerosis using miR-33b knock-in humanized mice under apolipoprotein E-deficient background. MiR-33b is prominent both in human and mice on atheroprone condition. MiR-33b reduced serum high-density lipoprotein cholesterol levels and systemic reverse cholesterol transport. MiR-33b knock-in macrophages showed less cholesterol efflux capacity and higher inflammatory state via regulating lipid rafts. Thus, miR-33b promotes vulnerable atherosclerotic plaque formation. Furthermore, bone marrow transplantation experiments strengthen proatherogenic roles of macrophage miR-33b. Conclusions- Our data demonstrated critical roles of SREBF1-miR-33b axis on both lipid profiles and macrophage phenotype remodeling and indicate that miR-33b is a promising target for treating atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , MicroARNs/metabolismo , Placa Aterosclerótica , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Apoptosis , Aterosclerosis/genética , Aterosclerosis/patología , Trasplante de Médula Ósea , Estudios de Casos y Controles , HDL-Colesterol/sangre , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica , Humanos , Absorción Intestinal , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Microdominios de Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , MicroARNs/genética , Persona de Mediana Edad , Fenotipo , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Triglicéridos/sangre
6.
Arterioscler Thromb Vasc Biol ; 37(11): 2161-2170, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28882868

RESUMEN

OBJECTIVE: Abdominal aortic aneurysm (AAA) is an increasingly prevalent and ultimately fatal disease with no effective pharmacological treatment. Because matrix degradation induced by vascular inflammation is the major pathophysiology of AAA, attenuation of this inflammation may improve its outcome. Previous studies suggested that miR-33 (microRNA-33) inhibition and genetic ablation of miR-33 increased serum high-density lipoprotein cholesterol and attenuated atherosclerosis. APPROACH AND RESULTS: MiR-33a-5p expression in central zone of human AAA was higher than marginal zone. MiR-33 deletion attenuated AAA formation in both mouse models of angiotensin II- and calcium chloride-induced AAA. Reduced macrophage accumulation and monocyte chemotactic protein-1 expression were observed in calcium chloride-induced AAA walls in miR-33-/- mice. In vitro experiments revealed that peritoneal macrophages from miR-33-/- mice showed reduced matrix metalloproteinase 9 expression levels via c-Jun N-terminal kinase inactivation. Primary aortic vascular smooth muscle cells from miR-33-/- mice showed reduced monocyte chemotactic protein-1 expression by p38 mitogen-activated protein kinase attenuation. Both of the inactivation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase were possibly because of the increase of ATP-binding cassette transporter A1 that is a well-known target of miR-33. Moreover, high-density lipoprotein cholesterol derived from miR-33-/- mice reduced expression of matrix metalloproteinase 9 in macrophages and monocyte chemotactic protein-1 in vascular smooth muscle cells. Bone marrow transplantation experiments indicated that miR-33-deficient bone marrow cells ameliorated AAA formation in wild-type recipients. MiR-33 deficiency in recipient mice was also shown to contribute the inhibition of AAA formation. CONCLUSIONS: These data strongly suggest that inhibition of miR-33 will be effective as a novel strategy for treating AAA.


Asunto(s)
Aorta Abdominal/metabolismo , Aneurisma de la Aorta Abdominal/prevención & control , Aortitis/prevención & control , Mediadores de Inflamación/metabolismo , MicroARNs/metabolismo , Angiotensina II , Animales , Aorta Abdominal/patología , Aneurisma de la Aorta Abdominal/inducido químicamente , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/metabolismo , Aortitis/inducido químicamente , Aortitis/genética , Aortitis/metabolismo , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Trasplante de Médula Ósea , Cloruro de Calcio , Línea Celular , Quimiocina CCL2/metabolismo , HDL-Colesterol/sangre , Dilatación Patológica , Modelos Animales de Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/patología , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Fenotipo , Transducción de Señal , Factores de Tiempo , Transfección , Remodelación Vascular , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Circ J ; 82(5): 1231-1236, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29526985

RESUMEN

Protein-coding genes account for less than 2% of the whole genome. However, the advances in RNA sequencing and genome-wide analysis have demonstrated that most of the genome is capable of being transcribed. Moreover, recent studies have suggested that long non-coding RNAs (lncRNAs) are critical regulators of gene expression and epigenesis in both physiological and disease states. Several lncRNAs are functionally involved in cardiovascular diseases and may be potential therapeutic targets. Here, we review the current strategies for the discovery of functional lncRNAs and recently discovered lncRNAs in the cardiovascular field, focusing on cardiac development, hypertrophy, heart failure, and atherosclerosis. We also discuss the therapeutic potentials of synthetic RNAs to modulate these lncRNAs and future directions in this research field.


Asunto(s)
Aterosclerosis , Cardiomegalia , Insuficiencia Cardíaca , ARN Largo no Codificante , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
8.
Circ Res ; 116(2): 279-88, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25362209

RESUMEN

RATIONALE: In some patients with type 2 diabetes mellitus (DM) without hypertension, cardiac hypertrophy and attenuated cardiac function are observed, and this insult is termed diabetic cardiomyopathy. To date, microRNA (miRNAs or miR) functions in diabetic cardiomyopathy remain to be elucidated. OBJECTIVE: To clarify the functions of miRNAs involved in diabetic cardiomyopathy caused by type 2 DM. METHODS AND RESULTS: C57BL/6 mice were fed a high-fat diet (HFD) for 20 weeks, which induced obesity and type 2 DM. miRNA microarray analyses and real-time polymerase chain reaction revealed that miR-451 levels were significantly increased in the type 2 DM mouse hearts. Because excess supply of saturated fatty acids is a cause of diabetic cardiomyopathy, we stimulated neonatal rat cardiac myocytes with palmitic acid and confirmed that miR-451 expression was increased in a dose- and time-dependent manner. Loss of miR-451 function ameliorated palmitate-induced lipotoxicity in neonatal rat cardiac myocytes. Calcium-binding protein 39 (Cab39) is a scaffold protein of liver kinase B1 (LKB1), an upstream kinase of AMP-activated protein kinase (AMPK). Cab39 was a direct target of miR-451 in neonatal rat cardiac myocytes and Cab39 overexpression rescued the lipotoxicity. To clarify miR-451 functions in vivo, we generated cardiomyocyte-specific miR-451 knockout mice. HFD-induced cardiac hypertrophy and contractile reserves were ameliorated in cardiomyocyte-specific miR-451 knockout mice compared with control mice. Protein levels of Cab39 and phosphorylated AMPK were increased and phosphorylated mammalian target of rapamycin (mTOR) was reduced in cardiomyocyte-specific miR-451 knockout mouse hearts compared with control mouse hearts. CONCLUSIONS: Our results demonstrate that miR-451 is involved in diabetic cardiomyopathy through suppression of the LKB1/AMPK pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Cardiomegalia/metabolismo , Dieta Alta en Grasa/efectos adversos , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Animales Recién Nacidos , Cardiomegalia/patología , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Miocitos Cardíacos/patología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología
9.
Circ J ; 79(2): 278-84, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25744742

RESUMEN

MicroRNAs (miRNAs; miRs) are small non-protein-coding RNAs that negatively regulate gene expression. They bind to the 3' UTR of specific mRNAs and either inhibit translation or promote mRNA degradation. There is emerging evidence linking miR-33a/b to lipid homoeostasis, targeting ABCA1,SREBF1, etc and it would appear that they have acted as "thrifty genes" during evolution to maintain cholesterol levels both at the cellular and whole body level. As we are now living in a period of "satiation", miR-33a/b no longer seem to be useful and could be potential therapeutic targets for lipid disorders and/or atherosclerosis. In this review, we describe the current understanding of the function of miR-33a/b in lipid homeostasis, focusing on the "thrifty" aspect.


Asunto(s)
Regiones no Traducidas 3' , Aterosclerosis/metabolismo , Metabolismo de los Lípidos , MicroARNs/metabolismo , Estabilidad del ARN , Transportador 1 de Casete de Unión a ATP/biosíntesis , Transportador 1 de Casete de Unión a ATP/genética , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Regulación de la Expresión Génica , Humanos , MicroARNs/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/biosíntesis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
10.
Int Heart J ; 56(4): 365-71, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26084456

RESUMEN

MicroRNAs (miRNAs) are small non-protein-coding RNAs that negatively regulate gene expression. They bind to the 3'-untranslated region of specific mRNAs and inhibit translation or promote mRNA degradation. Dyslipidemia/hyperlipidemia is a well-accepted risk factor for the development of atherosclerosis. The pathogenesis factors involved in lipid abnormalities are being examined extensively, and there is emerging evidence linking miRNAs to lipid metabolism. Among them, recent studies, including ours, have demonstrated that miRNAs control the expression of genes associated with high-density lipoprotein (HDL) cholesterol (HDL-C) metabolism, including ABCA1, ABCG1, and scavenger receptor class B, type I. Moreover, HDL-C itself was proved to carry miRNAs and deliver them to several different types of cells. In this review, we describe the current understanding of the functions of miRNAs in HDL metabolism and their potential in therapy for treating cardiometabolic diseases.


Asunto(s)
HDL-Colesterol , Dislipidemias/genética , MicroARNs/genética , Transportador 1 de Casete de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/genética , Animales , Aterosclerosis/prevención & control , HDL-Colesterol/genética , HDL-Colesterol/metabolismo , Dislipidemias/metabolismo , Dislipidemias/prevención & control , Regulación de la Expresión Génica , Humanos , Biosíntesis de Proteínas/genética , Receptores Depuradores de Clase B/genética
11.
Proc Natl Acad Sci U S A ; 107(40): 17321-6, 2010 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-20855588

RESUMEN

Sterol regulatory element-binding protein 2 (SREBP-2) transcription factor has been identified as a key protein in cholesterol metabolism through the transactivation of the LDL receptor and cholesterol biosynthesis genes. Here, we generated mice lacking microRNA (miR)-33, encoded by an intron of the Srebp2, and showed that miR-33 repressed the expression of ATP-binding cassette transporter A1 (ABCA1) protein, a key regulator of HDL synthesis by mediating cholesterol efflux from cells to apolipoprotein A (apoA)-I. In fact, peritoneal macrophages derived from miR-33-deficient mice showed a marked increase in ABCA1 levels and higher apoA-I-dependent cholesterol efflux than those from WT mice. ABCA1 protein levels in liver were also higher in miR-33-deficient mice than in WT mice. Moreover, miR-33-deficient mice had significantly higher serum HDL cholesterol levels than WT mice. These data establish a critical role for miR-33 in the regulation of ABCA1 expression and HDL biogenesis in vivo.


Asunto(s)
HDL-Colesterol/metabolismo , Intrones , MicroARNs/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Transportador 1 de Casete de Unión a ATP , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Secuencia de Bases , Bovinos , Línea Celular , Pollos , HDL-Colesterol/genética , Femenino , Humanos , Macrófagos/metabolismo , Ratones , MicroARNs/genética , Datos de Secuencia Molecular , Alineación de Secuencia , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
12.
Front Physiol ; 14: 1054169, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36733907

RESUMEN

Introduction: The ribosomal protein L3-like (RPL3L) is a heart and skeletal muscle-specific ribosomal protein and paralogue of the more ubiquitously expressed RPL3 protein. Mutations in the human RPL3L gene are linked to childhood cardiomyopathy and age-related atrial fibrillation, yet the function of RPL3L in the mammalian heart remains unknown. Methods and Results: Here, we observed that mouse cardiac ventricles express RPL3 at birth, where it is gradually replaced by RPL3L in adulthood but re-expressed with induction of hypertrophy in adults. Rpl3l gene-deleted mice were generated to examine the role of this gene in the heart, although Rpl3l -/- mice showed no overt changes in cardiac structure or function at baseline or after pressure overload hypertrophy, likely because RPL3 expression was upregulated and maintained in adulthood. mRNA expression analysis and ribosome profiling failed to show differences between the hearts of Rpl3l null and wild type mice in adulthood. Moreover, ribosomes lacking RPL3L showed no differences in localization within cardiomyocytes compared to wild type controls, nor was there an alteration in cardiac tissue ultrastructure or mitochondrial function in adult Rpl3l -/- mice. Similarly, overexpression of either RPL3 or RPL3L with adeno-associated virus -9 in the hearts of mice did not cause discernable pathology. However, by 18 months of age Rpl3l -/- null mice had significantly smaller hearts compared to wild type littermates. Conclusion: Thus, deletion of Rpl3l forces maintenance of RPL3 expression within the heart that appears to fully compensate for the loss of RPL3L, although older Rpl3l -/- mice showed a mild but significant reduction in heart weight.

13.
Cells ; 12(17)2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37681905

RESUMEN

RATIONALE: The adult cardiac extracellular matrix (ECM) is largely comprised of type I collagen. In addition to serving as the primary structural support component of the cardiac ECM, type I collagen also provides an organizational platform for other ECM proteins, matricellular proteins, and signaling components that impact cellular stress sensing in vivo. OBJECTIVE: Here we investigated how the content and integrity of type I collagen affect cardiac structure function and response to injury. METHODS AND RESULTS: We generated and characterized Col1a2-/- mice using standard gene targeting. Col1a2-/- mice were viable, although by young adulthood their hearts showed alterations in ECM mechanical properties, as well as an unanticipated activation of cardiac fibroblasts and induction of a progressive fibrotic response. This included augmented TGFß activity, increases in fibroblast number, and progressive cardiac hypertrophy, with reduced functional performance by 9 months of age. Col1a2-loxP-targeted mice were also generated and crossed with the tamoxifen-inducible Postn-MerCreMer mice to delete the Col1a2 gene in myofibroblasts with pressure overload injury. Interestingly, while germline Col1a2-/- mice showed gradual pathologic hypertrophy and fibrosis with aging, the acute deletion of Col1a2 from activated adult myofibroblasts showed a loss of total collagen deposition with acute cardiac injury and an acute reduction in pressure overload-induce cardiac hypertrophy. However, this reduction in hypertrophy due to myofibroblast-specific Col1a2 deletion was lost after 2 and 6 weeks of pressure overload, as fibrotic deposition accumulated. CONCLUSIONS: Defective type I collagen in the heart alters the structural integrity of the ECM and leads to cardiomyopathy in adulthood, with fibroblast expansion, activation, and alternate fibrotic ECM deposition. However, acute inhibition of type I collagen production can have an anti-fibrotic and anti-hypertrophic effect.


Asunto(s)
Cardiomiopatías , Colágeno Tipo I , Animales , Ratones , Cardiomegalia/genética , Colágeno Tipo I/genética , Fibrosis
14.
J Cell Biochem ; 113(11): 3455-65, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22678827

RESUMEN

Tissue-specific patterns of gene expression play an important role in the distinctive features of each organ. Small CTD phosphatases (SCPs) 1-3 are recruited by repressor element 1 (RE-1)-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) to neuronal genes that contain RE-1 elements, leading to neuronal gene silencing in non-neuronal cells. SCPs are highly expressed in the heart and contain microRNAs (miR)-26b, 26a-2, and 26a-1 with the same seed sequence in their introns. Therefore, we tried to investigate the roles of miR-26b and its host gene in neonatal rat cardiomyocytes. Overexpression of miR-26b suppressed the mRNA expression levels of ANF, ßMHC, and ACTA1 and reduced the cell surface area in cardiomyocytes. We confirmed that miR-26b targets the 3' untranslated region (3'UTR) of GATA4 and canonical transient receptor potential channel (TRPC) 3. Conversely, silencing of the endogenous miR-26b family enhanced the expression levels of TRPC3 and GATA4. On the other hand, overexpression of SCP1 induced the mRNA expression of ANF and ßMHC and increased the cell surface area in cardiomyocytes. Next, we compared the effect of overexpression of SCP1 with its introns and SCP1 cDNA to observe the net function of SCP1 expression on cardiac hypertrophy. When the expression levels of SCP1 were the same, the overexpression of SCP1 cDNA had a greater effect at inducing cardiac hypertrophy than SCP1 cDNA with its intron. In conclusion, SCP1 itself has the potential to induce cardiac hypertrophy; however, the effect is suppressed by intronic miR-26b in cardiomyocytes. miR-26b has an antagonistic effect on its host gene SCP1.


Asunto(s)
Cardiomegalia/genética , Regulación de la Expresión Génica , Intrones , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Animales , Animales Recién Nacidos , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patología , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Genes Reporteros , Luciferasas , Masculino , Ratones , MicroARNs/metabolismo , Miocitos Cardíacos/patología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Especificidad de Órganos , ARN Interferente Pequeño/genética , Ratas , Secuencias Reguladoras de Ácidos Nucleicos , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Transfección
15.
J Biol Chem ; 285(7): 4920-30, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20007690

RESUMEN

MicroRNAs (miRNAs or miRs) are small, non-coding RNAs that modulate mRNA stability and post-transcriptional translation. A growing body of evidence indicates that specific miRNAs can affect the cellular function of cardiomyocytes. In the present study, miRNAs that are highly expressed in the heart were overexpressed in neonatal rat ventricular myocytes, and cellular ATP levels were assessed. As a result, miR-15b, -16, -195, and -424, which have the same seed sequence, the most critical determinant of miRNA targeting, decreased cellular ATP levels. These results suggest that these miRNAs could specifically down-regulate the same target genes and consequently decrease cellular ATP levels. Through a bioinformatics approach, ADP-ribosylation factor-like 2 (Arl2) was identified as a potential target of miR-15b. It has already been shown that Arl2 localizes to adenine nucleotide transporter 1, the exchanger of ADP/ATP in mitochondria. Overexpression of miR-15b, -16, -195, and -424 suppressed the activity of a luciferase reporter construct fused with the 3'-untranslated region of Arl2. In addition, miR-15b overexpression decreased Arl2 mRNA and protein expression levels. The effects of Arl2 siRNA on cellular ATP levels were the same as those of miR-15b, and the expression of Arl2 could restore ATP levels reduced by miR-15b. A loss-of-function study of miR-15b resulted in increased Arl2 protein and cellular ATP levels. Electron microscopic analysis revealed that mitochondria became degenerated in cardiomyocytes that had been transduced with miR-15b and Arl2 siRNA. The present results suggest that miR-15b may decrease mitochondrial integrity by targeting Arl2 in the heart.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteínas de Unión al GTP/metabolismo , MicroARNs/fisiología , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Animales Recién Nacidos , Western Blotting , Supervivencia Celular , Células Cultivadas , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , MicroARNs/genética , Microscopía Electrónica de Transmisión , Mitocondrias/genética , Mitocondrias/ultraestructura , Miocitos Cardíacos/ultraestructura , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Nat Commun ; 12(1): 843, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33594062

RESUMEN

Adaptive thermogenesis is essential for survival, and therefore is tightly regulated by a central neural circuit. Here, we show that microRNA (miR)-33 in the brain is indispensable for adaptive thermogenesis. Cold stress increases miR-33 levels in the hypothalamus and miR-33-/- mice are unable to maintain body temperature in cold environments due to reduced sympathetic nerve activity and impaired brown adipose tissue (BAT) thermogenesis. Analysis of miR-33f/f dopamine-ß-hydroxylase (DBH)-Cre mice indicates the importance of miR-33 in Dbh-positive cells. Mechanistically, miR-33 deficiency upregulates gamma-aminobutyric acid (GABA)A receptor subunit genes such as Gabrb2 and Gabra4. Knock-down of these genes in Dbh-positive neurons rescues the impaired cold-induced thermogenesis in miR-33f/f DBH-Cre mice. Conversely, increased gene dosage of miR-33 in mice enhances thermogenesis. Thus, miR-33 in the brain contributes to maintenance of BAT thermogenesis and whole-body metabolism via enhanced sympathetic nerve tone through suppressing GABAergic inhibitory neurotransmission. This miR-33-mediated neural mechanism may serve as a physiological adaptive defense mechanism for several stresses including cold stress.


Asunto(s)
MicroARNs/metabolismo , Sistema Nervioso Simpático/fisiología , Termogénesis/genética , Tejido Adiposo Pardo/fisiología , Animales , Temperatura Corporal/fisiología , Peso Corporal , Encéfalo/metabolismo , Línea Celular , Frío , Dieta Alta en Grasa , Estrés del Retículo Endoplásmico , Humanos , Integrasas/metabolismo , Masculino , Ratones , Ratones Obesos , MicroARNs/genética , Consumo de Oxígeno/fisiología , Fenotipo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
17.
J Mol Cell Cardiol ; 48(6): 1157-68, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19853610

RESUMEN

Screening for cell surface proteins up-regulated under stress conditions may lead to the identification of new therapeutic targets. To search for genes whose expression was enhanced by treatment with oligomycin, a mitochondrial-F(0)F(1) ATP synthase inhibitor, signal sequence trapping was performed in H9C2 rat cardiac myoblasts. One of the genes identified was that for neural cell adhesion molecule (NCAM, CD56), a major regulator of development, cell survival, migration, and neurite outgrowth in the nervous system. Immunohistochemical analyses in a mouse myocardial infarction model revealed that NCAM was strongly expressed in residual cardiac myocytes in the infarcted region. Increased expression of NCAM was also found during the remodeling period in a rat model of hypertension-induced heart failure. Lentivirus-mediated knockdown of NCAM decreased the cell growth and survival following oligomycin treatment in H9C2 cells. In primary rat neonatal cardiac myocytes, NCAM was also found to be up-regulated and played a protective role following oligomycin treatment. Analyses of downstream signaling revealed that knockdown of NCAM significantly decreased the basal AKT phosphorylation level. In contrast, NCAM mimetic peptide P2d activated AKT and significantly reduced oligomycin-induced cardiomyocyte death, which was abolished by treatment with the PI3K inhibitor LY-294002 as well as overexpression of the dominant-negative AKT mutant. These findings demonstrate that NCAM is a cardioprotective factor up-regulated under metabolic stress in cardiomyocytes and augmentation of this signal improved survival.


Asunto(s)
Cardiotónicos/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Regulación hacia Arriba , Animales , Membrana Celular/metabolismo , Proliferación Celular , Supervivencia Celular , Inhibidores Enzimáticos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Miocitos Cardíacos/citología , Oligomicinas/farmacología , ATPasas de Translocación de Protón/antagonistas & inhibidores , Ratas
18.
Commun Biol ; 3(1): 434, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792557

RESUMEN

Recent high-throughput approaches have revealed a vast number of transcripts with unknown functions. Many of these transcripts are long noncoding RNAs (lncRNAs), and intergenic region-derived lncRNAs are classified as long intergenic noncoding RNAs (lincRNAs). Although Myosin heavy chain 6 (Myh6) encoding primary contractile protein is down-regulated in stressed hearts, the underlying mechanisms are not fully clarified especially in terms of lincRNAs. Here, we screen upregulated lincRNAs in pressure overloaded hearts and identify a muscle-abundant lincRNA termed Lionheart. Compared with controls, deletion of the Lionheart in mice leads to decreased systolic function and a reduction in MYH6 protein levels following pressure overload. We reveal decreased MYH6 results from an interaction between Lionheart and Purine-rich element-binding protein A after pressure overload. Furthermore, human LIONHEART levels in left ventricular biopsy specimens positively correlate with cardiac systolic function. Our results demonstrate Lionheart plays a pivotal role in cardiac remodeling via regulation of MYH6.


Asunto(s)
Corazón/fisiopatología , Presión , ARN Largo no Codificante/genética , Sístole/genética , Animales , Biopsia , Dependovirus/metabolismo , Ventrículos Cardíacos/ultraestructura , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/metabolismo , Ratas , Regulación hacia Arriba/genética
19.
Biochem Biophys Res Commun ; 389(2): 315-20, 2009 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-19720047

RESUMEN

GLUT4 shows decreased levels in failing human adult hearts. We speculated that GLUT4 expression in cardiac muscle may be fine-tuned by microRNAs. Forced expression of miR-133 decreased GLUT4 expression and reduced insulin-mediated glucose uptake in cardiomyocytes. A computational miRNA target prediction algorithm showed that KLF15 is one of the targets of miR-133. It was confirmed that over-expression of miR-133 reduced the protein level of KLF15, which reduced the level of the downstream target GLUT4. Cardiac myocytes infected with lenti-decoy, in which the 3'UTR with tandem sequences complementary to miR-133 was linked to the luciferase reporter gene, had decreased miR-133 levels and increased levels of GLUT4. The expression levels of KLF15 and GLUT4 were decreased at the left ventricular hypertrophy and congestive heart failure stage in a rat model. The present results indicated that miR-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiomyocytes.


Asunto(s)
Regulación de la Expresión Génica , Transportador de Glucosa de Tipo 4/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Secuencia de Bases , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Humanos , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/metabolismo , MicroARNs/genética , Datos de Secuencia Molecular , Ratas , Ratas Endogámicas Dahl
20.
JACC Basic Transl Sci ; 4(6): 701-714, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31709319

RESUMEN

No effective treatment is yet available to reduce infarct size and improve clinical outcomes after acute myocardial infarction by enhancing early reperfusion therapy using primary percutaneous coronary intervention. The study showed that Kyoto University Substance 121 (KUS121) reduced endoplasmic reticulum stress, maintained adenosine triphosphate levels, and ameliorated the infarct size in a murine cardiac ischemia and reperfusion injury model. The study confirmed the cardioprotective effect of KUS121 in a porcine ischemia and reperfusion injury model. These findings confirmed that KUS121 is a promising novel therapeutic agent for myocardial infarction in conjunction with primary percutaneous coronary intervention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA