Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cancer Biol Ther ; 4(12): 1355-60, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16294023

RESUMEN

To determine if A1 adenosine receptors mediate breast tumorigenesis, we evaluated A1 receptor expression in human tumor cell lines and human primary breast tumor tissues using both quantitative RT-PCR and Western blot analysis. A1 receptor mRNA expression is upregulated in all breast tumor cell lines examined (n=7) compared to normal mammary epithelial cells/cell lines (n=3) as determined by quantitative RT-PCR analysis. Western blot analysis indicates that protein expression of A1 adenosine receptor is higher in 15 (62.5%) of 24 human primary breast tumor tissues than in matched normal breast tissue. To explore its cellular function, the A1 adenosine receptor was depleted by small interfering RNA (siRNA) in MDA-MB-468 human breast tumor cells. Depletion of A1 receptors in MDA-MB-468 breast tumor cells attenuated both cell growth and cell proliferation as measured by cell number counts and [(14)C]-thymidine incorporation, respectively. Cell cycle analysis indicated that depletion of A1 receptors by siRNA impairs G(1) checkpoint, leading to marked accumulation of cells in G(2)/M phase, in agreement with the inhibitory effect on cell proliferation. Further supporting this finding, synchronization studies of Hela cells in various cell cycle phases suggest that A1 receptor expression is suppressed in G(2)/M cells and depletion of A1 receptor expression by siRNA produced differential expression of several key cell cycle regulators, i.e., accumulation of the cyclin-dependent kinase inhibitor p27 with concomitant reduction of CDK4 and cyclin E proteins. In addition to the impact on cell cycle progression, depletion of A1 receptors by siRNA results in substantial cell death and apoptosis as determined by FACS analysis and annexin V staining method. Together these findings suggest that the A1 adenosine receptor may contribute to tumor cell growth and survival in breast tumor cells.


Asunto(s)
Apoptosis , Neoplasias de la Mama/patología , Carcinoma/patología , Proliferación Celular , Interferencia de ARN , Receptor de Adenosina A1/metabolismo , Mama/citología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Células Cultivadas , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , ARN Mensajero/metabolismo
2.
J Lipid Res ; 48(9): 2065-71, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17602204

RESUMEN

In this study, we present the identification and characterization of hamster and guinea pig nicotinic acid receptors. The hamster receptor shares approximately 80-90% identity with the nucleotide and amino acid sequences of human, mouse, and rat receptors. The guinea pig receptor shares 76-80% identity with the nucleotide and amino acid sequences of these other species. [(3)H]nicotinic acid binding affinity at guinea pig and hamster receptors is similar to that in human (dissociation constant = 121 nM for guinea pig, 72 nM for hamster, and 74 nM for human), as are potencies of nicotinic acid analogs in competition binding studies. Inhibition of forskolin-stimulated cAMP production by nicotinic acid and related analogs is also similar to the activity in the human receptor. Analysis of mRNA tissue distribution for the hamster and guinea pig nicotinic acid receptors shows expression across a number of tissues, with higher expression in adipose, lung, skeletal muscle, spleen, testis, and ovary.


Asunto(s)
Receptores Nicotínicos/aislamiento & purificación , Receptores Nicotínicos/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Clonación Molecular , Cricetinae , Cricetulus , Cobayas , Humanos , Datos de Secuencia Molecular , Niacina/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA