Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Bioorg Chem ; 140: 106824, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37669581

RESUMEN

Four new 26-carboxylated ergostane-type sterols (Sarcodonol A-D) were isolated from 70% ethanol extracts of dried fruiting bodies of Sarcodon imbricatus. Their chemical structures were elucidated using 1D- and 2D-nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry, and confirmed by comparison with previously reported data. As far as we know, this is the first instance of isolating a 26-carboxylated ergostane-type sterol from nature. The determined antiviral efficacy of sarcodonol A-D (1-4) against HCoV-OC43 in MRC-5 cells confirmed that sarcodonol D (4) had significant antiviral activity. Notably, sarcodonol D (4) potently blocked virus infection at low-micromolar concentration and showed high SI (IC50 = 2.26 µM; CC50 > 100 µM; SI > 44.2). In addition, this research shows that the antiviral effect of sarcodonol D (4) via reduced apoptosis increased by viral infection is through mitochondrial stress regulation. This suggests that sarcodonol D (4) is a potential candidate for use as an antiviral treatment.


Asunto(s)
Antivirales , Basidiomycota , Coronavirus Humano OC43 , Esteroles , Antivirales/química , Antivirales/farmacología , Apoptosis , Ácidos Carboxílicos , Cuerpos Fructíferos de los Hongos/química , Esteroles/química , Esteroles/farmacología , Basidiomycota/química
2.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36293371

RESUMEN

There has been an immense effort by global pharmaceutical companies to develop anti-COVID-19 drugs, including small molecule-based RNA replication inhibitors via drug repositioning and antibody-based spike protein blockers related to cell entry by SARS-CoV-2. However, several limitations to their clinical use have emerged in addition to a lack of progress in the development of small molecule-based cell entry inhibitors from natural products. In this study, we tested the effectiveness of kuwanon C (KC), which has mainly been researched using in silico docking simulation and can serve as an effective building block for developing anti-COVID-19 drugs, in blocking the spike S1 RBD:ACE2 receptor interaction. KC is a natural product derived from Morus alba L., commonly known as mulberry, which has known antiviral efficacy. Molecular interaction studies using competitive ELISA and the BLItz system revealed that KC targets both the spike S1 RBD and the ACE2 receptor, successfully disrupting their interaction, as supported by the in silico docking simulation. Furthermore, we established a mechanism of action by observing how KC prevents the infection of SARS-CoV-2 spike pseudotyped virus in ACE2/TPRSS2-overexpressing HEK293T cells. Finally, we demonstrated that KC inhibits clinical isolates of SARS-CoV-2 in Vero cells. Future combinations of small molecule-based cell entry inhibitors, such as KC, with the currently prescribed RNA replication inhibitors are anticipated to significantly enhance the efficacy of COVID-19 therapies.


Asunto(s)
Productos Biológicos , Tratamiento Farmacológico de COVID-19 , Morus , Chlorocebus aethiops , Animales , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Morus/metabolismo , Células Vero , Células HEK293 , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Antivirales/farmacología , Preparaciones Farmacéuticas , ARN/metabolismo
3.
Molecules ; 26(4)2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33672072

RESUMEN

Calcium (Ca2+) dependent signaling circuit plays a critical role in influenza A virus (IAV) infection. The 8-O-(E-p-methoxycinnamoyl)harpagide (MCH) exhibits pharmacological activities that exert neuroprotective, hepatoprotective, anti-inflammatory and other biological effects. However, not have reports of antiviral effects. To investigate the antiviral activity of MCH on IAV-infected human lung cells mediated by calcium regulation. We examined the inhibitory effect of MCH on IAV infections and measured the level of viral proteins upon MCH treatment using Western blotting. We also performed molecular docking simulation with MCH and IAV M2 protein. Finally, we analyzed MCH's suppression of intracellular calcium and ROS (reactive oxygen species) in IAV-infected human lung cells using a flow cytometer. The results shown that MCH inhibited the infection of IAV and increased the survival of the infected human lung cells. The levels of IAV protein M1, M2, NS1 and PA were inhibited in MCH-treated human lung cells compared to that in infected and untreated cells. Also, docking simulation suggest that MCH interacted with M2 on its hydrophobic wall (L40 and I42) and polar amino acids (D44 and R45), which formed intermolecular contacts and were a crucial part of the channel gate along with W41. Lastly, MCH inhibited IAV infection by reducing intracellular calcium and mitochondrial Ca2+/ROS levels in infected human lung cells. Taken together, these data suggest that MCH inhibits IAV infection and increases the survival of infected human lung cells by suppressing calcium levels. These results indicate that MCH is useful for developing IAV treatments.


Asunto(s)
Antivirales/farmacología , Calcio/metabolismo , Virus de la Influenza A/efectos de los fármacos , Espacio Intracelular/metabolismo , Glicósidos Iridoides/farmacología , Piranos/farmacología , Células A549 , Antivirales/uso terapéutico , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Canales Iónicos/metabolismo , Glicósidos Iridoides/química , Glicósidos Iridoides/uso terapéutico , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Simulación del Acoplamiento Molecular , Piranos/química , Piranos/uso terapéutico , Proteínas de la Matriz Viral
4.
Molecules ; 25(19)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987774

RESUMEN

To identify new potential anti-influenza compounds, we isolated six flavonoids, 2'-hydroxyl yokovanol (1), 2'-hydroxyl neophellamuretin (2), yokovanol (3), swertisin (4), spinosin (5), and 7-methyl-apigenin-6-C-ß-glucopyranosyl 2″-O-ß-d-xylopyranoside (6) from MeOH extractions of Ohwia caudata. We screened these compounds for antiviral activity using green fluorescent protein (GFP)-expressing H1N1 (A/PR/8/34) influenza A-infected RAW 264.7 cells. Compounds 1 and 3 exhibited significant inhibitory effects against influenza A viral infection in co-treatment conditions. In addition, compounds 1 and 3 reduced viral protein levels, including M1, M2, HA, and neuraminidase (NA), and suppressed neuraminidase (NA) activity in RAW 264.7 cells. These findings demonstrated that 2'-hydroxyl yokovanol and yokovanol, isolated from O. caudate, inhibit influenza A virus by suppressing NA activity. The moderate inhibitory activities of these flavonoids against influenza A virus suggest that they may be developed as novel anti-influenza drugs in the future.


Asunto(s)
Antivirales/farmacología , Fabaceae/química , Flavonoides/farmacología , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Infecciones por Orthomyxoviridae , Animales , Antivirales/química , Antivirales/aislamiento & purificación , Flavonoides/química , Flavonoides/aislamiento & purificación , Ratones , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/patología , Células RAW 264.7
5.
Molecules ; 25(12)2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32549214

RESUMEN

Enzymatic browning because of polyphenol oxidases (PPOs) contributes to the color quality of fruit and vegetable (FV) products. Physical and chemical methods have been developed to inhibit the activity of PPOs, and several synthetic chemical compounds are commonly being used as PPO inhibitors in FV products. Recently, there has been an emphasis on consumer-oriented innovations in the food industry. Consumers tend to urge the use of natural and environment-friendly PPO inhibitors. The purpose of this review is to summarize the mechanisms underlying the anti-browning action of chemical PPO inhibitors and current trends in the research on these inhibitors. Based on their mechanisms of action, chemical inhibitors can be categorized as antioxidants, reducing agents, chelating agents, acidulants, and/or mixed-type PPO inhibitors. Here, we focused on the food ingredients, dietary components, food by-products, and waste associated with anti-browning activity.


Asunto(s)
Catecol Oxidasa/antagonistas & inhibidores , Frutas/química , Frutas/enzimología , Antioxidantes , Catecol Oxidasa/química , Catecol Oxidasa/metabolismo , Quelantes , Manipulación de Alimentos , Frutas/metabolismo , Reacción de Maillard/efectos de los fármacos , Oxidación-Reducción , Sustancias Reductoras
6.
Bioorg Chem ; 92: 103234, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31479985

RESUMEN

Nine new xanthones, cudracuspixanthones I - Q (12-14, 25, 32-36), and 30 known xanthones (1-11, 15-24, 26-31, 37-39) were isolated from the stems of Cudrania tricuspidata (Moraceae). The structures of isolated compounds were established by using 1D and 2D NMR in combination with HR-TOF-MS. Xanthones from the stems of C. tricuspidata exerted pancreatic lipase inhibitory activity. In addition, cudracuspixanthone P (35), a new xanthone, reduced the fat accumulation in liver cells stimulated with fatty acids. Therefore, these compounds might be beneficial in the treatment of metabolic diseases.


Asunto(s)
Lipasa/antagonistas & inhibidores , Metabolismo de los Lípidos/efectos de los fármacos , Moraceae/química , Páncreas/efectos de los fármacos , Tallos de la Planta/química , Xantonas/farmacología , Células Hep G2 , Humanos , Estructura Molecular , Páncreas/embriología , Extractos Vegetales/química , Triglicéridos/metabolismo , Xantonas/química , Xantonas/aislamiento & purificación
7.
Biosci Biotechnol Biochem ; 81(12): 2285-2291, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29090619

RESUMEN

In the course of screening to find a plant material decreasing the activity of triacylglycerol and cholesterol, we identified Tripterygium regelii (TR). The methanol extract of TR leaves (TR-LM) was shown to reduce the intracellular lipid contents consisting of triacylglycerol (TG) and cholesterol in HepG2 cells. TR-LM also downregulated the mRNA and protein expression of the lipogenic genes such as SREBP-1 and its target enzymes. Consequently, TR-LM reduced the TG biosynthesis in HepG2 cells. In addition, TR-LM decreased SREBP2 and its target enzyme HMG-CoA reductase, which is involved in cholesterol synthesis. In this study, we evaluated that TR-LM attenuated cellular lipid contents through the suppression of de novo TG and cholesterol biosynthesis in HepG2 cells. All these taken together, TR-LM could be beneficial in regulating lipid metabolism and useful preventing the hyperlipidemia and its complications, in that liver is a crucial tissue for the secretion of serum lipids.


Asunto(s)
Colesterol/biosíntesis , Extractos Vegetales/farmacología , Triglicéridos/biosíntesis , Tripterygium/química , Regulación de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Metanol/química , Hojas de la Planta/química
8.
Planta Med ; 81(3): 228-34, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25671385

RESUMEN

Six known triterpenoid compounds, 3-oxoolean-12-en-27-oic acid (1), gypsogenic acid (2), 3α-hydroxyolean-12-en-27-oic acid (3), 3ß-hydroxyolean-12-en-27-oic acid (4), aceriphyllic acid A (5), and oleanolic acid (6), were isolated from the roots of Aceriphyllum rossii. Their chemical structures were determined by comparison with available (1)H-NMR and (13)C-NMR data on known compounds. All the isolated compounds were evaluated for inhibitory activity against human diacylglycerol acyltransferases 1 and 2. Most of the isolates exhibited a better inhibitory activity against diacylglycerol acyltransferase 2 (IC50: 11.6-44.2 µM) than against diacylglycerol acyltransferase 1 (IC50: 22.7-119.5 µM). In particular, compounds 1 and 5 showed strong inhibition efficacy towards diacylglycerol acyltransferases 1 and 2, and appeared to act competitively against oleoyl-CoA in vitro. The results also indicated that both compounds reduced newly synthesized triacylglycerol in HuTu80 and HepG2 cells. Oral administration of compound 1 significantly reduced postprandial triacylglycerol in mice following an oral lipid challenge. In conclusion, the current study indicates that compound 1 suppresses both de novo triacylglycerol biosynthesis and resynthesis through the inhibition of diacylglycerol acyltransferase activity, and therefore may be a useful agent for treating diseases associated with a high triacylglycerol level.


Asunto(s)
Diacilglicerol O-Acetiltransferasa/sangre , Inhibidores Enzimáticos/farmacología , Ácido Oleanólico/farmacología , Extractos Vegetales/farmacología , Saxifragaceae/química , Triglicéridos/sangre , Acilcoenzima A/metabolismo , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Células Hep G2 , Humanos , Ratones , Estructura Molecular , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/química , Ácido Oleanólico/aislamiento & purificación , Extractos Vegetales/química , Raíces de Plantas
9.
Biol Pharm Bull ; 37(10): 1655-60, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25099343

RESUMEN

Diacylglycerol acyltransferase 2 (DGAT2), which catalyzes the final step in triacylglycerol (TG) synthesis, is a key enzyme associated with hepatic steatosis and insulin resistance. Here, using an in vitro screen of 20000 molecules, we identified a class of compounds with a substituted 1H-pyrrolo[2,3-b]pyridine core which proved to be potent and selective inhibitors of human DGAT2. Of these compounds, H2-003 and -005 exhibited a considerable reduction in TG biosynthesis in HepG2 hepatic cells and 3T3-L1 preadipose cells. These compounds exert DGAT2-specific-inhibitory activity, which was further confirmed in DGAT2- or DGAT1-overexpressing HEK293 cells. In addition, these compounds almost completely abolished lipid droplet formation in 3T3-L1 cells when co-treated with a DGAT1 inhibitor, which was not attained using either a DGAT2 or DGAT1 inhibitor alone. Collectively, we identified two DGAT2 inhibitors, H2-003 and -005. These compounds will aid in DGAT2-related lipid metabolism research as well as in therapeutic development for the treatment of metabolic diseases associated with excessive TG.


Asunto(s)
Acetatos/química , Acetatos/farmacología , Diacilglicerol O-Acetiltransferasa/antagonistas & inhibidores , Descubrimiento de Drogas/métodos , Piridinas/química , Piridinas/farmacología , Células 3T3-L1 , Animales , Diacilglicerol O-Acetiltransferasa/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Ratones
10.
Antioxidants (Basel) ; 13(1)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38247540

RESUMEN

The common human coronavirus (HCoV) exhibits mild disease with upper respiratory infection and common cold symptoms. HCoV-OC43, one of the HCoVs, can be used to screen drug candidates against SARS-CoV-2. We determined the antiviral effects of FDA/EMA-approved drug anastrozole (AZ) on two human coronaviruses, HCoV-OC43 and HCoV-229E, using MRC-5 cells in vitro. The AZ exhibited antiviral effects against HCoV-OC43 and HCoV-229E infection. Subsequent studies focused on HCoV-OC43, which is related to the SARS-CoV-2 family. AZ exhibited anti-viral effects and reduced the secretion of inflammatory cytokines, TNF-α, IL-6, and IL-1ß. It also inhibited NF-κB translocation to effectively suppress the inflammatory response. AZ reduced intracellular calcium and reactive oxygen species (ROS) levels, including mitochondrial ROS and Ca2+, induced by the virus. AZ inhibited the expression of NLRP3 inflammasome components and cleaved IL-1ß, suggesting that it blocks NLRP3 inflammasome activation in HCoV-OC43-infected cells. Moreover, AZ enhanced cell viability and reduced the expression of cleaved gasdermin D (GSDMD), a marker of pyroptosis. Overall, we demonstrated that AZ exhibits antiviral activity against HCoV-OC43 and HCoV-229E. We specifically focused on its efficacy against HCoV-OC43 and showed its potential to reduce inflammation, inhibit NLRP3 inflammasome activation, mitigate mitochondrial dysfunction, and suppress pyroptosis in infected cells.

11.
J Ginseng Res ; 48(4): 384-394, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39036736

RESUMEN

Background: Herpes simplex virus type 1 (HSV-1), known to latently infect the host's trigeminal ganglion, can lead to severe herpes encephalitis or asymptomatic infection, potentially contributing to neurodegenerative diseases like Alzheimer's. The virus generates reactive oxygen species (ROS) that significantly impact viral replication and induce chronic inflammation through NF-κB activation. Nuclear factor E2-related factor 2 (Nrf2), an oxidative stress regulator, can prevent and treat HSV-1 infection by activating the passive defense response in the early stages of infection. Methods and results: Our study investigated the antiviral effects of ginsenoside Rg5, an Nrf2 activator, on HSV-1 replication and several host cell signaling pathways. We found that HSV-1 infection inhibited Nrf2 activity in host cells, induced ROS/NF-κB signaling, and triggered inflammatory cytokines. However, treatment with ginsenoside Rg5 inhibited ROS/NF-κB signaling and reduced inflammatory cytokines through NRF2 induction. Interestingly, the Nrf2 inhibitor ML385 suppressed the expression of NAD(P)H quinone oxidoreductase 1(NQO1) and enhanced the expression of KEAP1 in HSV-1 infected cells. This led to the reversal of VP16 expression inhibition, a protein factor associated with HSV-1 infection, thereby promoting HSV-1 replication. Conclusion: These findings suggest for the first time that ginsenoside Rg5 may serve as an antiviral against HSV-1 infection and could be a novel therapeutic agent for HSV-1-induced neuroinflammation.

12.
Front Immunol ; 14: 1157506, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711616

RESUMEN

Influenza is an acute respiratory disorder caused by the influenza virus and is associated with prolonged hospitalization and high mortality rates in older individuals and chronically ill patients. Vaccination is the most effective preventive strategy for ameliorating seasonal influenza. However, the vaccine is not fully effective in cases of antigenic mismatch with the viral strains circulating in the community. The emergence of resistance to antiviral drugs aggravates the situation. Therefore, developing new vaccines and antiviral drugs is essential. Castanea crenata honey (CH) is an extensively cultivated food worldwide and has been used as a nutritional supplement or herbal medicine. However, the potential anti-influenza properties of CH remain unexplored. In this study, the in vitro and in vivo antiviral effects of CH were assessed. CH significantly prevented influenza virus infection in mouse Raw264.7 macrophages. CH pretreatment inhibited the expression of the viral proteins M2, PA, and PB1 and enhanced the secretion of proinflammatory cytokines and type-I interferon (IFN)-related proteins in vitro. CH increased the expression of RIG-1, mitochondrial antiviral signaling (MAVS) protein, and IFN-inducible transmembrane protein, which interferes with virus replication. CH reduced body weight loss by 20.9%, increased survival by 60%, and decreased viral replication and inflammatory response in the lungs of influenza A virus-infected mice. Therefore, CH stimulates an antiviral response in murine macrophages and mice by preventing viral infection through the RIG-1-mediated MAVS pathway. Further investigation is warranted to understand the molecular mechanisms involved in the protective effects of CH on influenza virus infection.


Asunto(s)
Miel , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Ratones , Humanos , Inmunidad Innata , Antivirales/farmacología , Antivirales/uso terapéutico
13.
Acta Pharm Sin B ; 13(1): 174-191, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36815046

RESUMEN

The development of drug-resistant influenza and new pathogenic virus strains underscores the need for antiviral therapeutics. Currently, neuraminidase (NA) inhibitors are commonly used antiviral drugs approved by the US Food and Drug Administration (FDA) for the prevention and treatment of influenza. Here, we show that vitisin B (VB) inhibits NA activity and suppresses H1N1 viral replication in MDCK and A549 cells. Reactive oxygen species (ROS), which frequently occur during viral infection, increase virus replication by activating the NF-κB signaling pathway, downmodulating glucose-6-phosphate dehydrogenase (G6PD) expression, and decreasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant response activity. VB decreased virus-induced ROS generation by increasing G6PD expression and Nrf2 activity, and inhibiting NF-κB translocation to the nucleus through IKK dephosphorylation. In addition, VB reduced body weight loss, increased survival, decreased viral replication and the inflammatory response in the lungs of influenza A virus (IAV)-infected mice. Taken together, our results indicate that VB is a promising therapeutic candidate against IAV infection, complements existing drug limitations targeting viral NA. It modulated the intracellular ROS by G6PD, Nrf2 antioxidant response pathway, and NF-κB signaling pathway. These results demonstrate the feasibility of a multi-targeting drug strategy, providing new approaches for drug discovery against IAV infection.

14.
Antioxidants (Basel) ; 12(11)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38001788

RESUMEN

Herpes simplex virus 1 (HSV-1) is double-stranded DNA virus that belongs to the Orthoherpesviridae family. It causes serious neurological diseases of the central nervous system, such as encephalitis. The current U.S. Food and Drug Administration (FDA)-approved drugs for preventing HSV-1 infection include acyclovir (ACV) and valacyclovir; however, their long-term use causes severe side effects and often results in the emergence of drug-resistant strains. Therefore, it is important to discover new antiviral agents that are safe and effective against HSV-1 infection. Korean chestnut honey (KCH) has various pharmacological activities, such as antioxidant, antibacterial, and anti-inflammation effects; however, antiviral effects against HSV-1 have not yet been reported. Therefore, we determined the antiviral activity and mechanism of action of KCH after HSV-1 infection on the cellular level. KCH inhibited the HSV-1 infection of host cells through binding and virucidal steps. KCH decreased the production of reactive oxygen species (ROS) and calcium (Ca2+) following HSV-1 infection and suppressed the production of inflammatory cytokines by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-кB) activity. Furthermore, we found that KCH inhibited the expression of the nod-like receptor protein 3 (NLRP3) inflammasome during HSV-1 infection. Taken together, the antiviral effects of KCH occur through multiple targets, including the inhibition of viral replication and the ROS-mediated NLRP3 inflammasome pathway. Our findings suggest that KCH has potential for the treatment of HSV-1 infection and related diseases.

15.
J Med Food ; 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37566462

RESUMEN

Regulation of diacylglycerol acyltransferase (DGAT) and pancreatic lipase (PL) activities is important in the treatment of triacylglycerol (TG)-related metabolic diseases. Garcinia mangostana, also known as mangosteen, is a traditional medicine ingredient used in the treatment of inflammation in Southeast Asia. In this study, The ethanolic extract of G. mangostana peel inhibited human recombinant DGAT1 and DGAT2, and PL enzyme activities in vitro. The inhibitory activity of DGAT1 and DGAT2 enzymes of four representative bioactive substances in mangosteen was confirmed. In addition, G. mangostana was confirmed to suppress the serum TG levels in C57 mice by inhibiting the absorption and synthesis of TG in the gastrointestinal tract. Through this study, it was revealed that G. mangostana extract could be useful for the prevention and amelioration of TG-related metabolic diseases such as obesity and fatty liver.

16.
Nat Prod Res ; 36(7): 1914-1918, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32924622

RESUMEN

A new sesquiterpene, namely linderolide U (1), was isolated from the root of Lindera aggregata (Sims) Kosterm along with five known sesquiterpenes (2-6). The structures of the obtained compounds were identified by spectroscopic methods, specifically nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). The acquired data were compared with those previously reported in the literature. The anticancer effects of the isolated natural products were studied using the HCT116 human colon cancer cell line. Compound 5 was found to significantly suppress cell proliferation, which was associated with induction of apoptosis and cell cycle arrest (G2/M and S phase). The findings of the present study suggest derivative 5 as a potential agent for the treatment of colon cancer.


Asunto(s)
Lindera , Sesquiterpenos , Línea Celular , Humanos , Lindera/química , Espectroscopía de Resonancia Magnética , Raíces de Plantas/química , Sesquiterpenos/química
17.
Biomed Pharmacother ; 153: 113259, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35717782

RESUMEN

Recently, attention has focused on the prevention and treatment of respiratory viruses including influenza viruses. We evaluated the antiviral effect of Tilia amurensis honey (TH) against influenza A virus in murine macrophages. Influenza A virus infection was reduced following pretreatment with TH. Pretreatment of murine macrophages with TH increased the production and secretion of type-1 interferon (IFN) and proinflammatory cytokines and increased phosphorylation of the type-1 IFN-related proteins, TANK-binding kinase (TBK), and STAT. Moreover, TH increased the expression of IFN-stimulating genes and increased the expression of IFN-inducible transmembrane (IFITM3), a protein that interferes with virus replication and entry. Taken together, these findings suggest that TH suppresses influenza A virus infection by regulating the innate immune response in macrophages. This supports the development of preventive and therapeutic agents for influenza A virus and enhances the economic value of TH.


Asunto(s)
Miel , Virus de la Influenza A , Gripe Humana , Interferón Tipo I , Animales , Humanos , Virus de la Influenza A/metabolismo , Gripe Humana/tratamiento farmacológico , Gripe Humana/prevención & control , Interferón Tipo I/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Unión al ARN/metabolismo , Tilia/metabolismo , Replicación Viral
18.
Nutrients ; 14(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36235822

RESUMEN

Despite the recent development of RNA replication-targeted COVID-19 drugs by global pharmaceutical companies, their prescription in clinical practice is limited by certain factors, including drug interaction, reproductive toxicity, and drug resistance. COVID-19 drugs with multiple targets for the SARS-CoV-2 life cycle may lead to a successful reduction in drug resistance as well as enhanced therapeutic efficacy, and natural products are a potential source of molecules with therapeutic effects against COVID-19. In this study, we investigated the inhibitory efficacy of mulberrofuran G (MG), a component of Morus alba L., also known as mulberry, which has been used as food and traditional medicine, on the binding of the spike S1 receptor-binding domain (RBD) protein to the angiotensin-converting enzyme 2 (ACE2) receptor, which is the initial stage of the SARS-CoV-2 infection. In competitive enzyme-linked immunosorbent assays, MG effectively blocked the spike S1 RBD: ACE2 receptor molecular binding, and investigations using the BLItz system and in silico modeling revealed that MG has high affinity for both proteins. Finally, we confirmed that MG inhibits the entry of SARS-CoV-2 spike pseudotyped virus and a clinical isolate of SARS-CoV-2 into cells, suggesting that MG might be a promising therapeutic candidate for preventing SARS-CoV-2 binding to the cell surface during early infection.


Asunto(s)
Productos Biológicos , Tratamiento Farmacológico de COVID-19 , Morus , Enzima Convertidora de Angiotensina 2 , Benzofuranos , Humanos , Peptidil-Dipeptidasa A/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Terpenos
19.
Pharmaceutics ; 14(5)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35631588

RESUMEN

The use of cancer-derived exosomes has been studied in several cancer types, but the cancer-targeting efficacy of glioma-derived exosomes has not been investigated in depth for malignant glioblastoma (GBM) cells. In this study, exosomes were derived from U87MG human glioblastoma cells, and selumetinib, a new anticancer drug, was loaded into the exosomes. We observed the tropism of GBM-derived exosomes in vitro and in vivo. We found that the tropism of GBM-derived exosomes is in contrast to the behavior of non-exosome-enveloped drugs and non-GBM-specific exosomes in vitro and in vivo in an animal GBM model. We found that the tropism exhibited by GBM-derived exosomes can be utilized to shuttle selumetinib, with no specific targeting moiety, to GBM tumor sites. Therefore, our findings indicated that GBM-derived exosomes loaded with selumetinib had a specific antitumor effect on U87MG cells and were non-toxic to normal brain cells. These exosomes offer improved therapeutic prospects for glioblastoma therapy.

20.
Antioxidants (Basel) ; 11(6)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35740060

RESUMEN

Maclurin is rich in some edible fruits such as Morus alba (white mulberry) and Garcinia mangostana. Although maclurin showed anti-cancer and antioxidant effects, its roles in ultraviolet (UV)-induced melanogenesis have not been studied. Here, we investigated the effects of maclurin in melanogenesis using skin cells and a three-dimensional human skin model. When the cytotoxicity of maclurin was examined in B16F10 cells, no cytotoxicity was found up to 20 µM. Maclurin suppressed UVB-mediated tyrosinase activation and melanin accumulation in B16F10 cells without changes in mRNA levels of melanogenesis-related genes including tyrosinase, TRP1, TRP2, CREB, and MITF. Moreover, maclurin reduced melanin contents in melan-a cells, a cell line for normal melanocytes. When applied to a human skin model consisting of the epidermis and melanocytes, maclurin significantly reduced UVB-induced melanin accumulation (~47%) in a concentration-dependent manner based on microscopic observation and Fontana-Masson staining. Protein-ligand docking simulation followed by binding residue analysis showed that maclurin may bind to inactivate tyrosinase by forming multiple hydrogen bonds and hydrophobic and aromatic interactions with the residues of tyrosinase. Together, our study suggests that maclurin may be applied as an anti-melanogenic agent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA