Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Chem Neurosci ; 14(20): 3761-3771, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37796021

RESUMEN

In the human brain, neurophysiological activity is modulated by the movement of neurotransmitters and neurosteroids. To date, the similarity between cerebral organoids and actual human brains has been evaluated using comprehensive multiomics approaches. However, a systematic analysis of both neurotransmitters and neurosteroids from cerebral organoids has not yet been reported. Here, we performed quantitative and qualitative assessments of neurotransmitters and neurosteroids over the course of cerebral organoid differentiation. Our multiomics approaches revealed that the expression levels of neurotransmitter-related proteins and RNA, including neurosteroids, increase as cerebral organoids mature. We also found that the electrophysiological activity of human cerebral organoids increases in tandem with the expression levels of both neurotransmitters and neurosteroids. Our study demonstrates that the expression levels of neurotransmitters and neurosteroids can serve as key factors in evaluating the maturity and functionality of human cerebral organoids.


Asunto(s)
Neuroesteroides , Humanos , Neuroesteroides/metabolismo , Neurotransmisores/farmacología , Neurotransmisores/metabolismo , Encéfalo/metabolismo , Organoides , Diferenciación Celular
2.
ACS Nano ; 6(3): 2157-64, 2012 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-22390268

RESUMEN

Mercaptocarboxylic acids with different carbon chain lengths were used for stabilizing uniform 15 nm copper nanoparticles. The effects of surface chemistry such as ligand type and surface oxidation on the reactive oxygen species (ROS) generated by the copper nanoparticles were examined. Transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), UV-vis spectroscopy, and an acellular ROS assay show that ROS generation is closely related to the surface oxidation of copper nanoparticles. It was found that the copper nanoparticles with longer chain ligands had surfaces that were better protected from oxidation and a corresponding lower ROS generating capacity than did particles with shorter chain ligands. Conversely, the copper nanoparticles with greater surface oxidation also had higher ROS generating capacity.


Asunto(s)
Cobre/química , Nanopartículas del Metal/química , Especies Reactivas de Oxígeno/química , Fenómenos Químicos , Coloides , Ligandos , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA