Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 23(1): 17, 2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-34996357

RESUMEN

BACKGROUND: Schisandra chinensis, an ancient member of the most basal angiosperm lineage which is known as the ANITA, is a fruit-bearing vine with the pharmacological effects of a multidrug system, such as antioxidant, anti-inflammatory, cardioprotective, neuroprotective, anti-osteoporosis effects. Its major bioactive compound is represented by lignans such as schisandrin. Molecular characterization of lignan biosynthesis in S. chinensis is of great importance for improving the production of this class of active compound. However, the biosynthetic mechanism of schisandrin remains largely unknown. RESULTS: To understand the potential key catalytic steps and their regulation of schisandrin biosynthesis, we generated genome-wide transcriptome data from three different tissues of S. chinensis cultivar Cheongsoon, including leaf, root, and fruit, via long- and short-read sequencing technologies. A total of 132,856 assembled transcripts were generated with an average length of 1.9 kb and high assembly completeness. Overall, our data presented effective, accurate gene annotation in the prediction of functional pathways. In particular, the annotation revealed the abundance of transcripts related to phenylpropanoid biosynthesis. Remarkably, transcriptome profiling during fruit development of S. chinensis cultivar Cheongsoon revealed that the phenylpropanoid biosynthetic pathway, specific to coniferyl alcohol biosynthesis, showed a tendency to be upregulated at the postfruit development stage. Further the analysis also revealed that the pathway forms a transcriptional network with fruit ripening-related genes, especially the ABA signaling-related pathway. Finally, candidate unigenes homologous to isoeugenol synthase 1 (IGS1) and dirigent-like protein (DIR), which are subsequently activated by phenylpropanoid biosynthesis and thus catalyze key upstream steps in schisandrin biosynthesis, were identified. Their expression was increased at the postfruit development stage, suggesting that they may be involved in the regulation of schisandrin biosynthesis in S. chinensis. CONCLUSIONS: Our results provide new insights into the production and accumulation of schisandrin in S. chinensis berries and will be utilized as a valuable transcriptomic resource for improving the schisandrin content.


Asunto(s)
Lignanos , Schisandra , Antioxidantes , Frutas/química , Frutas/genética , Lignanos/análisis , Transcriptoma
2.
J Nurs Manag ; 30(8): 4461-4471, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36326092

RESUMEN

AIM: This study explored how ethically competent nurses behave in clinical nursing practice. BACKGROUND: Nurses' ethical competency is crucial in nursing practice as it promotes patients' safety and quality of care. METHODS: Using a purposive sampling technique, 20 clinical nurses in South Korea were interviewed via an online video platform. The data were analysed using a thematic analysis based on phenomenological approach. RESULTS: The main theme found among the participating nurses' ethical competency was caring beyond egocentrism, with two subthemes: (1) patient-centred care based on compassion and (2) responsible behaviour based on nursing professionalism. Factors that enabled this included (1) reasonable work conditions, (2) interpersonal relationships, and (3) nurses' rich personal experiences. CONCLUSIONS: Nurses' ethical competency depends on how far they can move away from their own egocentrism and act for their clients' benefit, wherein an appropriate workload and warm human relationships with one's colleagues are essential. Nurses should thus receive education on ethics and professionalism and participate in volunteer and leisure activities that cultivate their degree of empathy. IMPLICATION FOR NURSING MANAGEMENT: Nursing leaders and managers should understand nurses' ethical competency and its enabling factors to devise effective strategies to promote it.


Asunto(s)
Ética en Enfermería , Enfermeras y Enfermeros , Humanos , Investigación Cualitativa , República de Corea , Relaciones Interpersonales
3.
Stem Cells ; 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33107705

RESUMEN

In the peripheral nervous system (PNS), proper development of Schwann cells (SCs) contributing to axonal myelination is critical for neuronal function. Impairments of SCs or neuronal axons give rise to several myelin-related disorders, including dysmyelinating and demyelinating diseases. Pathological mechanisms, however, have been understood at the elementary level and targeted therapeutics has remained undeveloped. Here, we identify Fibulin 5 (FBLN5), an extracellular matrix (ECM) protein, as a key paracrine factor of human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) to control the development of SCs. We show that co-culture with WJ-MSCs or treatment of recombinant FBLN5 promotes the proliferation of SCs through ERK activation, whereas FBLN5-depleted WJ-MSCs do not. We further reveal that during myelination of SCs, FBLN5 binds to Integrin and modulates actin remodeling, such as the formation of lamellipodia and filopodia, through RAC1 activity. Finally, we show that FBLN5 effectively restores the myelination defects of SCs in the zebrafish model of Charcot-Marie-Tooth (CMT) type 1, a representative demyelinating disease. Overall, our data propose human WJ-MSCs or FBLN5 protein as a potential treatment for myelin-related diseases, including CMT.

4.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785002

RESUMEN

Glucoraphasatin (GRH) is a specific aliphatic glucosinolate (GSL) that is only abundant in radish (Raphanus sativus L.). The gene expression regulating GRH biosynthesis in radish is still poorly understood. We employed a total of 59 radish accessions to analyze GSL profiles and showed that GRH was specific and predominant among the aliphatic GSLs in radish roots. We selected five accessions roots with high, moderate and low GSL biosynthesis, respectively, to conduct a comparative transcriptome analysis and the qRT-PCR of the biosynthesis genes for aliphatic GSLs. In this study, among all the accessions tested, roots with the accession RA157-74 had a high GRH content and showed a significant expression of the aliphatic GSL biosynthesis genes. We defined the genes involved in the GRH biosynthesis process and found that they were regulated by a transcription factor (RSG00789) at the MYB29 locus in radish roots. We found 13 aliphatic GSL biosynthesis genes regulated by the RSG00789 gene in the GRH biosynthesis pathway.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucosinolatos/biosíntesis , Proteínas de Plantas/genética , Raphanus/genética , Raphanus/metabolismo , Factores de Transcripción/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , ARN de Planta/genética , RNA-Seq , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma
5.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32993025

RESUMEN

Mesenchymal stem cells (MSCs) are safe, and they have good therapeutic efficacy through their paracrine action. However, long-term culture to produce sufficient MSCs for clinical use can result in side-effects, such as an inevitable senescence and the reduction of the therapeutic efficacy of the MSCs. In order to overcome this, the primary culture conditions of the MSCs can be modified to simulate the stem cells' niche environment, resulting in accelerated proliferation, the achievement of the target production yield at earlier passages, and the improvement of the therapeutic efficacy. We exposed Wharton's jelly-derived MSCs (WJ-MSCs) to pressure stimuli during the primary culture step. In order to evaluate the proliferation, stemness, and therapeutic efficacy of WJ-MSCs, image, genetic, and Western blot analyses were carried out. Compared with standard incubation culture conditions, the cell proliferation was significantly improved when the WJ-MSCs were exposed to pressure stimuli. However, the therapeutic efficacy (the promotion of cell proliferation and anti-apoptotic effects) and the stemness of the WJ-MSCs was maintained, regardless of the culture conditions. Exposure to pressure stimuli is a simple and efficient way to improve WJ-MSC proliferation without causing changes in stemness and therapeutic efficacy. In this way, clinical-grade WJ-MSCs can be produced rapidly and used for therapeutic applications.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Células Madre Mesenquimatosas/metabolismo , Comunicación Paracrina , Estrés Mecánico , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/citología
6.
J Nanosci Nanotechnol ; 18(2): 1419-1422, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29448603

RESUMEN

p-Xylene (PX) is an important large-volume commodity chemical in the petrochemical industry. Therefore, research on producing PX from bio-mass-derived resources is a considerable interest in relation to future alternative technologies. Recently, a new potential route for the direct and selective production of bio-based PX was reported, referred to as the Diels-Alder cycloaddition of biomassderived 2,5-dimethylfuran (DMF) and ethylene followed by the dehydration of an intermediate. Here, we prepared tungstated zirconia (WOx-ZrO2) materials at different calcination temperatures and times as solid acid catalysts for PX production. From structural analyses and measurements of the surface acidity, the WOx-ZrO2 was found to be composed of mesopores with high surface acidity within the optimum calcination temperature and time range. This WOx-ZrO2 catalyst exhibited high catalytic activity upon the cycloaddition of DMF with ethylene as compared to commercial beta zeolite and previously reported silica-alumina catalysts.

7.
Plant Mol Biol ; 95(4-5): 451-461, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29052098

RESUMEN

KEY MESSAGE: Comparative transcriptome analysis of wild and cultivated chrysanthemums provides valuable genomic resources and helps uncover common and divergent patterns of genome and gene evolution in these species. Plants are unique in that they employ polyploidy (or whole-genome duplication, WGD) as a key process for speciation and evolution. The Chrysanthemum genus is closely associated with hybridization and polyploidization, with Chrysanthemum species exhibiting diverse ploidy levels. The commercially important species, C. morifolium is an allohexaploid plant that is thought to have originated via the hybridization of several Chrysanthemum species, but the genomic and molecular evolutionary mechanisms remain poorly understood. In the present study, we sequenced and compared the transcriptomes of C. morifolium and the wild Korean diploid species, C. boreale. De novo transcriptome assembly revealed 11,318 genes in C. morifolium and 10,961 genes in C. boreale, whose functions were annotated by homology searches. An analysis of synonymous substitution rates (Ks) of paralogous and orthologous genes suggested that the two Chrysanthemum species commonly experienced the Asteraceae paleopolyploidization and recent genome duplication or triplication before the divergence of these species. Intriguingly, C. boreale probably underwent rapid diploidization, with a reduction in chromosome number, whereas C. morifolium maintained the original chromosome number. Analysis of the ratios of non-synonymous to synonymous nucleotide substitutions (Ka/Ks) between orthologous gene pairs indicated that 107 genes experienced positive selection, which may have been crucial for the adaptation, domestication, and speciation of Chrysanthemum.


Asunto(s)
Chrysanthemum/genética , Genoma de Planta/genética , Selección Genética , Transcriptoma , Chrysanthemum/fisiología , Análisis por Conglomerados , Diploidia , Domesticación , Evolución Molecular , Perfilación de la Expresión Génica , Hibridación Genética , Anotación de Secuencia Molecular , Poliploidía , Análisis de Secuencia de ADN
8.
Mol Ther ; 24(9): 1550-60, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27434589

RESUMEN

The role of Wharton's jelly-derived human mesenchymal stem cells (WJ-MSCs) in inhibiting muscle cell death has been elucidated in this study. Apoptosis induced by serum deprivation in mouse skeletal myoblast cell lines (C2C12) was significantly reduced when the cell lines were cocultured with WJ-MSCs. Antibody arrays indicated high levels of chemokine (C motif) ligand (XCL1) secretion by cocultured WJ-MSCs and XCL1 protein treatment resulted in complete inhibition of apoptosis in serum-starved C2C12 cells. Apoptosis of C2C12 cells and loss of differentiated C2C12 myotubes induced by lovastatin, another muscle cell death inducer, was also inhibited by XCL1 treatment. However, XCL1 treatment did not inhibit apoptosis of cell lines other than C2C12. When XCL1-siRNA pretreated WJ-MSCs were cocultured with serum-starved C2C12 cells, apoptosis was not inhibited, thus confirming that XCL1 is a key factor in preventing C2C12 cell apoptosis. We demonstrated the therapeutic effect of XCL1 on the zebrafish myopathy model, generated by knock down of a causative gene ADSSL1. Furthermore, the treatment of XCL1 resulted in significant recovery of the zebrafish skeletal muscle defects. These results suggest that human WJ-MSCs and XCL1 protein may act as promising and novel therapeutic agents for treatment of myopathies and other skeletal muscle diseases.


Asunto(s)
Apoptosis , Quimiocinas C/metabolismo , Células Madre Mesenquimatosas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Gelatina de Wharton/citología , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Humanos , Lovastatina/farmacología , Ratones , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patología , Fenotipo , Proteoma , Proteómica/métodos , Pez Cebra
9.
J Bacteriol ; 198(22): 3091-3098, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27573015

RESUMEN

The marine bacterium Vibrio alginolyticus has a single polar flagellum, the number of which is regulated positively by FlhF and negatively by FlhG. FlhF is intrinsically localized at the cell pole, whereas FlhG is localized there through putative interactions with the polar landmark protein HubP. Here we focused on the role of HubP in the regulation of flagellar number in V. alginolyticus Deletion of hubP increased the flagellar number and completely disrupted the polar localization of FlhG. It was thought that the flagellar number is determined primarily by the absolute amount of FlhF localized at the cell pole. Here we found that deletion of hubP increased the flagellar number although it did not increase the polar amount of FlhF. We also found that FlhG overproduction did not reduce the polar localization of FlhF. These results show that the absolute amount of FlhF is not always the determinant of flagellar number. We speculate that cytoplasmic FlhG works as a quantitative regulator, controlling the amount of FlhF localized at the pole, and HubP-anchored polar FlhG works as a qualitative regulator, directly inhibiting the activity of polar FlhF. This regulation by FlhF, FlhG, and HubP might contribute to achieving optimal flagellar biogenesis at the cell pole in V. alginolyticus IMPORTANCE: For regulation of the flagellar number in marine Vibrio, two proteins, FlhF and FlhG, work as positive and negative regulators, respectively. In this study, we found that the polar landmark protein HubP is involved in the regulation of flagellar biogenesis. Deletion of hubP increased the number of flagella without increasing the amount of pole-localizing FlhF, indicating that the number of flagella is not determined solely by the absolute amount of pole-localizing FlhF, which is inconsistent with the previous model. We propose that cytoplasmic FlhG and HubP-anchored polar FlhG negatively regulate flagellar formation through two independent schemes.


Asunto(s)
Proteínas Bacterianas/fisiología , Flagelos/fisiología , Proteínas de Unión al GTP Monoméricas/fisiología , Vibrio alginolyticus/genética , Proteínas Bacterianas/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Proteínas de Unión al GTP Monoméricas/genética , Vibrio alginolyticus/fisiología
10.
Theor Appl Genet ; 129(7): 1357-1372, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27038817

RESUMEN

KEYMESSAGE: This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated into nine chromosome pseudomolecules. Approximately 36 % of the genome was repetitive sequences and 46,514 protein-coding genes were predicted and annotated. Comparative mapping of the tPCK-like ancestral genome revealed that the radish genome has intermediate characteristics between the Brassica A/C and B genomes in the triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between radish and other Brassica species provided genomic evidences that the current form of nine chromosomes in radish was rearranged from the chromosomes of hexaploid progenitor. Overall, this study provides a chromosome-scale draft genome sequence of radish as well as novel insight into evolution of the mesohexaploid genomes in the tribe Brassiceae.


Asunto(s)
Genoma de Planta , Raphanus/genética , Brassica/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Hibridación Genómica Comparativa , ADN de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Análisis de Secuencia de ADN
11.
Plant J ; 77(6): 906-16, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24456463

RESUMEN

Ginseng (Panax ginseng) is a famous medicinal herb, but the composition and structure of its genome are largely unknown. Here we characterized the major repeat components and inspected their distribution in the ginseng genome. By analyzing three repeat-rich bacterial artificial chromosome (BAC) sequences from ginseng, we identified complex insertion patterns of 34 long terminal repeat retrotransposons (LTR-RTs) and 11 LTR-RT derivatives accounting for more than 80% of the BAC sequences. The LTR-RTs were classified into three Ty3/gypsy (PgDel, PgTat and PgAthila) and two Ty1/Copia (PgTork and PgOryco) families. Mapping of 30-Gbp Illumina whole-genome shotgun reads to the BAC sequences revealed that these five LTR-RT families occupy at least 34% of the ginseng genome. The Ty3/Gypsy families were predominant, comprising 74 and 33% of the BAC sequences and the genome, respectively. In particular, the PgDel family accounted for 29% of the genome and presumably played major roles in enlargement of the size of the ginseng genome. Fluorescence in situ hybridization (FISH) revealed that the PgDel1 elements are distributed throughout the chromosomes along dispersed heterochromatic regions except for ribosomal DNA blocks. The intensity of the PgDel2 FISH signals was biased toward 24 out of 48 chromosomes. Unique gene probes showed two pairs of signals with different locations, one pair in subtelomeric regions on PgDel2-rich chromosomes and the other in interstitial regions on PgDel2-poor chromosomes, demonstrating allotetraploidy in ginseng. Our findings promote understanding of the evolution of the ginseng genome and of that of related species in the Araliaceae.


Asunto(s)
Cromosomas de las Plantas/genética , Genoma de Planta/genética , Panax/genética , Retroelementos/genética , Secuencias Repetidas Terminales/genética , Secuencia de Aminoácidos , Secuencia de Bases , Cromosomas Artificiales Bacterianos , ADN de Plantas/genética , Evolución Molecular , Heterocromatina , Hibridación Fluorescente in Situ , Modelos Genéticos , Datos de Secuencia Molecular , Panax/citología , Filogenia , Análisis de Secuencia de ADN , Tetraploidía
14.
J Cereb Blood Flow Metab ; : 271678X241238843, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477254

RESUMEN

Neurovascular coupling (NVC) is the functional hyperemia of the brain responding to local neuronal activity. It is mediated by astrocytes and affected by subcortical ascending pathways in the cortex that convey information, such as sensory stimuli and the animal condition. Here, we investigate the influence of the raphe serotonergic system, a subcortical ascending arousal system in animals, on the modulation of cortical NVC and cerebral blood flow (CBF). Raphe serotonergic neurons were optogenically activated for 30 s, which immediately awakened the mice from non-rapid eye movement sleep. This caused a biphasic cortical hemodynamic change: a transient increase for a few seconds immediately after photostimulation onset, followed by a large progressive decrease during the stimulation period. Serotonergic neuron activation increased intracellular Ca2+ levels in cortical pyramidal neurons and astrocytes, demonstrating its effect on the NVC components. Pharmacological inhibition of cortical neuronal firing activity and astrocyte metabolic activity had small hypovolemic effects on serotonin-induced biphasic CBF changes, while blocking 5-HT1B receptors expressed primarily in cerebral vasculature attenuated the decreasing CBF phase. This suggests that serotonergic neuron activation leading to animal awakening could allow the NVC to exert a hyperemic function during a biphasic CBF response, with a predominant decrease in the cortex.

15.
Int J Stem Cells ; 17(1): 80-90, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37822280

RESUMEN

Cellular senescence causes cell cycle arrest and promotes permanent cessation of proliferation. Since the senescence of mesenchymal stem cells (MSCs) reduces proliferation and multipotency and increases immunogenicity, aged MSCs are not suitable for cell therapy. Therefore, it is important to inhibit cellular senescence in MSCs. It has recently been reported that metabolites can control aging diseases. Therefore, we aimed to identify novel metabolites that regulate the replicative senescence in MSCs. Using a fecal metabolites library, we identified nervonic acid (NA) as a candidate metabolite for replicative senescence regulation. In replicative senescent MSCs, NA reduced senescence-associated ß-galactosidase positive cells, the expression of senescence-related genes, as well as increased stemness and adipogenesis. Moreover, in non-senescent MSCs, NA treatment delayed senescence caused by sequential subculture and promoted proliferation. We confirmed, for the first time, that NA delayed and inhibited cellular senescence. Considering optimal concentration, duration, and timing of drug treatment, NA is a novel potential metabolite that can be used in the development of technologies that regulate cellular senescence.

16.
Plant Cell Rep ; 32(8): 1251-61, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23563522

RESUMEN

KEY MESSAGE: Quantitative trait loci (QTL) controlling callus induction and plant regeneration were identified in the VCS3M-DH population of Brassica rapa. Quantitative trait loci (QTL) controlling callus induction and plant regeneration were identified in the VCS3M-DH population of Brassica rapa. The VCS3M-DH population showed wide and continuous variation in callus induction and shoot regeneration. Significant coefficient correlations were detected between these two parameters. Broad-sense heritability (h (2)) for the two traits was around 0.7, indicating genetic regulation of regeneration ability in this population. In the composite interval mapping analysis, two QTLs for callus induction ability, qCi2 and qCi7, were mapped on chromosome A02 and A07, explaining 28.6 % of phenotypic variation. For plant regeneration, four QTLs, qPr6-1 qPr6-2, qPr7, and qPr9 were identified on chromosome A06, A07, and A09, which in total explained 50.1 % of phenotypic variation. Furthermore, 15 putative candidate genes were found on the interval of the six QTLs, which were related to various plant hormones, MADS-box genes, and serine/threonine related genes. These results provide important information to identify genes related to tissue culture ability in B. rapa.


Asunto(s)
Brassica/genética , Brassica/fisiología , Mapeo Cromosómico , Sitios de Carácter Cuantitativo/genética , Técnicas de Cultivo de Tejidos , Análisis de Varianza , Estudios de Asociación Genética , Haploidia , Patrón de Herencia/genética , Fenotipo , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Regeneración/fisiología
17.
J Nutr Biochem ; 111: 109173, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36228975

RESUMEN

The antidiabetic effects of green tea have been demonstrated in clinical trials and epidemiological studies. This study investigated the antidiabetic effects of green tea extract (GTE) and its underlying molecular mechanisms using a leptin receptor-deficient db/db mouse model (Leprdb/db). Treatment with GTE for 2 weeks improved glucose tolerance and insulin sensitivity in Leprdb/db mice. In addition, GTE treatment reduced the body weight and adiposity of Leprdb/db mice. Furthermore, GTE treatment reduced pro-inflammatory gene expression, including nuclear factor kappa B (NF-κB) in white adipose tissue (WAT), and also reduced dipeptidyl peptidase-4 (DPP4) expression levels in WAT as well as in the serum. The promoter region of Dpp4 contains the NF-κB binding site, and DPP4 was found to be a direct target of NF-κB. Consistently, in vitro treatment of cells with GTE or its main constituent epigallocatechin gallate reduced lipopolysaccharide-induced NF-κB/DPP4 expression in 3T3-L1 adipocytes and RAW264.7 cells. Overall, our data demonstrated that GTE exerts an anti-diabetic effect by regulating the expression levels of NF-κB and DPP4 in WAT.


Asunto(s)
Dipeptidil Peptidasa 4 , Hipoglucemiantes , Ratones , Animales , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/metabolismo , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , FN-kappa B/metabolismo , Extractos Vegetales/uso terapéutico , Tejido Adiposo/metabolismo , Té/química
18.
Front Plant Sci ; 14: 1183406, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469771

RESUMEN

The family Schisandraceae is a basal angiosperm plant group distributed in East and Southeast Asia and includes many medicinal plant species such as Schisandra chinensis. In this study, mitochondrial genomes (mitogenomes) of two species, Schisandra repanda and Kadsura japonica, in the family were characterized through de novo assembly using sequencing data obtained with Oxford Nanopore and Illumina sequencing technologies. The mitogenomes of S. repanda were assembled into one circular contig (571,107 bp) and four linear contigs (10,898-607,430 bp), with a total of 60 genes: 38 protein-coding genes (PCGs), 19 tRNA genes, and 3 rRNA genes. The mitogenomes of K. japonica were assembled into five circular contigs (211,474-973,503 bp) and three linear contigs (8,010-72,712 bp), with a total of 66 genes: 44 PCGs, 19 tRNA genes, and 3 rRNA genes. The mitogenomes of the two species had complex structural features with high repeat numbers and chloroplast-derived sequences, as observed in other plant mitogenomes. Phylogenetic analysis based on PCGs revealed the taxonomical relationships of S. repanda and K. japonica with other species from Schisandraceae. Finally, molecular markers were developed to distinguish between S. repanda, K. japonica, and S. chinensis on the basis of InDel polymorphisms present in the mitogenomes. The mitogenomes of S. repanda and K. japonica will be valuable resources for molecular and taxonomic studies of plant species that belong to the family Schisandraceae.

19.
iScience ; 26(1): 105830, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36713262

RESUMEN

The central serotonergic system has multiple roles in animal physiology and behavior, including sleep-wake control. However, its function in controlling brain energy metabolism according to the state of animals remains undetermined. Through in vivo monitoring of energy metabolites and signaling, we demonstrated that optogenetic activation of raphe serotonergic neurons increased cortical neuronal intracellular concentration of ATP, an indispensable cellular energy molecule, which was suppressed by inhibiting neuronal uptake of lactate derived from astrocytes. Raphe serotonergic neuronal activation induced cortical astrocytic Ca2+ and cAMP surges and increased extracellular lactate concentrations, suggesting the facilitation of lactate release from astrocytes. Furthermore, chemogenetic inhibition of raphe serotonergic neurons partly attenuated the increase in cortical neuronal intracellular ATP levels as arousal increased in mice. Serotonergic neuronal activation promoted an increase in cortical neuronal intracellular ATP levels, partly mediated by the facilitation of the astrocyte-neuron lactate shuttle, contributing to state-dependent optimization of neuronal intracellular energy levels.

20.
Int J Biol Macromol ; 222(Pt B): 3001-3013, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36244531

RESUMEN

The leakage issue and inferior heat conduction of organic phase change materials (PCMs) limit their actual applications. In the present study, cellulose nanofibril (CNF)-based foams were prepared as the porous scaffolds for polyethylene glycol (PEG) and paraffin wax (Pw) to prevent their leakage, and multiwalled carbon nanotubes (CNTs) were incorporated to improve the heat transfer performance. The prepared foams had low density (<67.3 kg/m3) and high porosity (>94.5 %). Selective chemical modifications of nanocellulose foams enhanced their shape-stability and compatibility with PCMs. The highly porous foam structure and favorable compatibility resulted in high PCM loading levels (93.63 % for PEG and 91.77 % for Pw) and negligible PCM leakage (<2 %). CNTs improved the heat transfer performance of PCMs, as evidenced by the improved thermal conductivities and boosted temperature rises during solar heating. Meanwhile, the composite PCMs exhibited improved thermal stability over the control. PEG-based composite PCM exhibited a phase change enthalpy of 143 kJ/kg with a melting temperature of 25.2 °C; Pw-based composite PCM exhibited a phase change enthalpy of 184 kJ/kg with a melting temperature of 53.4 °C. Novel PCM sandwich structures based on these composite PCMs and a thermoelectric generator were designed and displayed promising potential for solar energy harvesting and utilization.


Asunto(s)
Calor , Nanotubos de Carbono , Celulosa , Conductividad Térmica , Termodinámica , Parafina/química , Aerosoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA