Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34640993

RESUMEN

Human-robot interaction has received a lot of attention as collaborative robots became widely utilized in many industrial fields. Among techniques for human-robot interaction, collision identification is an indispensable element in collaborative robots to prevent fatal accidents. This paper proposes a deep learning method for identifying external collisions in 6-DoF articulated robots. The proposed method expands the idea of CollisionNet, which was previously proposed for collision detection, to identify the locations of external forces. The key contribution of this paper is uncertainty-aware knowledge distillation for improving the accuracy of a deep neural network. Sample-level uncertainties are estimated from a teacher network, and larger penalties are imposed for uncertain samples during the training of a student network. Experiments demonstrate that the proposed method is effective for improving the performance of collision identification.


Asunto(s)
Robótica , Destilación , Humanos , Redes Neurales de la Computación , Incertidumbre
2.
Artículo en Inglés | MEDLINE | ID: mdl-37028081

RESUMEN

This article investigates a novel sampled-data synchronization controller design method for chaotic neural networks (CNNs) with actuator saturation. The proposed method is based on a parameterization approach which reformulates the activation function as the weighted sum of matrices with the weighting functions. Also, controller gain matrices are combined by affinely transformed weighting functions. The enhanced stabilization criterion is formulated in terms of linear matrix inequalities (LMIs) based on the Lyapunov stability theory and weighting function's information. As shown in the comparison results of the bench marking example, the presented method much outperforms previous methods, and thus the enhancement of the proposed parameterized control is verified.

3.
IEEE Trans Neural Netw Learn Syst ; 33(7): 2791-2800, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33406045

RESUMEN

This article proposes a new Luenberger-type state estimator that has parameterized observer gains dependent on the activation function, to improve the H∞ state estimation performance of the static neural networks with time-varying delay. The nonlinearity of the activation function has a significant impact on stability analysis and robustness/performance. In the proposed state estimator, a parameter-dependent estimator gain is reconstructed by using the properties of the sector nonlinearity of the activation functions that are represented as linear combinations of weighting parameters. In the reformulated form, the constraints of the parameters for the activation function are considered in terms of linear matrix inequalities. Based on the Lyapunov-Krasovskii function and the improved reciprocally convex inequality, enhanced conditions for designing a new state estimator that guarantees H∞ performance are derived through a parameterization technique. The compared results with recent studies demonstrate the superiority and effectiveness of the presented method.


Asunto(s)
Redes Neurales de la Computación , Simulación por Computador , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA