Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
PLoS Pathog ; 20(2): e1012050, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38422159

RESUMEN

The bacterial determinants that facilitate Mycobacterium tuberculosis (Mtb) adaptation to the human host environment are poorly characterized. We have sought to decipher the pressures facing the bacterium in vivo by assessing Mtb genes that are under positive selection in clinical isolates. One of the strongest targets of selection in the Mtb genome is lldD2, which encodes a quinone-dependent L-lactate dehydrogenase (LldD2) that catalyzes the oxidation of lactate to pyruvate. Lactate accumulation is a salient feature of the intracellular environment during infection and lldD2 is essential for Mtb growth in macrophages. We determined the extent of lldD2 variation across a set of global clinical isolates and defined how prevalent mutations modulate Mtb fitness. We show the stepwise nature of lldD2 evolution that occurs as a result of ongoing lldD2 selection in the background of ancestral lineage-defining mutations and demonstrate that the genetic evolution of lldD2 additively augments Mtb growth in lactate. Using quinone-dependent antibiotic susceptibility as a functional reporter, we also find that the evolved lldD2 mutations functionally increase the quinone-dependent activity of LldD2. Using 13C-lactate metabolic flux tracing, we find that lldD2 is necessary for robust incorporation of lactate into central carbon metabolism. In the absence of lldD2, label preferentially accumulates in dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P) and is associated with a discernible growth defect, providing experimental evidence for accrued lactate toxicity via the deleterious buildup of sugar phosphates. The evolved lldD2 variants increase lactate incorporation to pyruvate while altering triose phosphate flux, suggesting both an anaplerotic and detoxification benefit to lldD2 evolution. We further show that the mycobacterial cell is transcriptionally sensitive to the changes associated with altered lldD2 activity which affect the expression of genes involved in cell wall lipid metabolism and the ESX- 1 virulence system. Together, these data illustrate a multifunctional role of LldD2 that provides context for the selective advantage of lldD2 mutations in adapting to host stress.


Asunto(s)
Mycobacterium tuberculosis , Humanos , Mycobacterium tuberculosis/metabolismo , L-Lactato Deshidrogenasa , Ácido Láctico/metabolismo , Piruvatos/metabolismo , Quinonas/metabolismo , Fosfatos/metabolismo
2.
EMBO Rep ; 25(6): 2592-2609, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38671295

RESUMEN

Various cytokines have been implicated in cancer cachexia. One such cytokine is IL-6, deemed as a key cachectic factor in mice inoculated with colon carcinoma 26 (C26) cells, a widely used cancer cachexia model. Here we tested the causal role of IL-6 in cancer cachexia by knocking out the IL-6 gene in C26 cells. We found that the growth of IL-6 KO tumors was dramatically delayed. More strikingly, while IL-6 KO tumors eventually reached the similar size as wild-type tumors, cachexia still took place, despite no elevation in circulating IL-6. In addition, the knockout of leukemia inhibitory factor (LIF), another IL-6 family cytokine proposed as a cachectic factor in the model, also affected tumor growth but not cachexia. We further showed an increase in the infiltration of immune cell population in the IL-6 KO tumors compared with wild-type controls and the defective IL-6 KO tumor growth was rescued in immunodeficient mice while cachexia was not. Thus, IL-6 promotes tumor growth by facilitating immune evasion but is dispensable for cachexia.


Asunto(s)
Caquexia , Interleucina-6 , Ratones Noqueados , Animales , Ratones , Caquexia/patología , Caquexia/genética , Caquexia/metabolismo , Caquexia/etiología , Caquexia/inmunología , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/inmunología , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Evasión Inmune , Interleucina-6/metabolismo , Interleucina-6/genética , Factor Inhibidor de Leucemia/metabolismo , Factor Inhibidor de Leucemia/genética
3.
Adv Biol (Weinh) ; : e2400083, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717792

RESUMEN

The regulation of complex energy metabolism is intricately linked to cellular energy demands. Caloric restriction (CR) plays a pivotal role in modulating the expression of genes associated with key metabolic pathways, including glycolysis, the tricarboxylic acid (TCA) cycle, and the glyoxylate cycle. In this study, the chronological lifespan (CLS) of 35 viable single-gene deletion mutants under both non-restricted and CR conditions, focusing on genes related to these metabolic pathways is evaluated. CR is found to increase CLS predominantly in mutants associated with the glycolysis and TCA cycle. However, this beneficial effect of CR is not observed in mutants of the glyoxylate cycle, particularly those lacking genes for critical enzymes like isocitrate lyase 1 (icl1Δ) and malate synthase 1 (mls1Δ). This analysis revealed an increase in isocitrate lyase activity, a key enzyme of the glyoxylate cycle, under CR, unlike the activity of isocitrate dehydrogenase, which remains unchanged and is specific to the TCA cycle. Interestingly, rapamycin, a compound known for extending lifespan, does not increase the activity of the glyoxylate cycle enzyme. This suggests that CR affects lifespan through a distinct metabolic mechanism.

4.
bioRxiv ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38405872

RESUMEN

Mammalian tissues feed on nutrients in the blood circulation. At the organism-level, mammalian energy metabolism comprises of oxidation, storage, interconverting, and releasing of circulating nutrients. Though much is known about the individual processes and nutrients, a holistic and quantitative model describing these processes for all major circulating nutrients is lacking. Here, by integrating isotope tracer infusion, mass spectrometry, and isotope gas analyzer measurement, we developed a framework to systematically quantify fluxes through these metabolic processes for 10 major circulating energy nutrients in mice, resulting in an organism-level quantitative flux model of energy metabolism. This model revealed in wildtype mice that circulating nutrients have more dominant metabolic cycling fluxes than their oxidation fluxes, with distinct partition between cycling and oxidation flux for individual circulating nutrients. Applications of this framework in obese mouse models showed on a per animal basis extensive elevation of metabolic cycling fluxes in ob/ob mice, but not in diet-induced obese mice. Thus, our framework describes quantitatively the functioning of energy metabolism at the organism-level, valuable for revealing new features of energy metabolism in physiological and disease conditions. Highlights: A flux model of energy metabolism integrating 13 C labeling of metabolites and CO 2 Circulating nutrients have characteristic partition between oxidation and storageCirculating nutrients' total cycling flux outweighs their total oxidation fluxCycling fluxes are extensively elevated in ob/ob but not in diet-induced obese mice.

5.
Res Sq ; 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38260380

RESUMEN

The role of glutathione peroxidase 4 (GPX4) in ferroptosis and various cancers is well-established; however, its specific contribution to colorectal cancer has been unclear. Surprisingly, in a genetic mouse model of colon tumors, the deletion of GPX4 specifically in colon epithelial cells increased tumor burden but decreased oxidized glutathione. Notably, this specific GPX4 deletion did not enhance susceptibility to dextran sodium sulfate (DSS)-induced colitis in mice with varied iron diets but showed vulnerability in mice with a vitamin E-deficient diet. Additionally, a high manganese diet heightened susceptibility, while a low manganese diet reduced DSS-induced colitis in colon epithelial-specific GPX4-deficient mice. Strikingly, the low manganese diet also significantly reduced colorectal cancer formation in both colon epithelial-specific GPX4-deficient and wildtype mice. Mechanistically, antioxidant proteins, especially manganese-dependent superoxide dismutase (MnSOD or SOD2), correlated with disease severity. Treatment with tempol, a superoxide dismutase mimetic radical scavenger, suppressed GPX4 deficiency-induced colorectal tumors. In conclusion, the study elucidates the critical role of GPX4 in inhibiting colorectal cancer progression by regulating oxidative stress in a manganese-dependent manner. The findings underscore the intricate interactions between GPX4, dietary factors, and their collective influence on colorectal cancer development, providing potential insights for personalized therapeutic strategies.

6.
Biochem Biophys Res Commun ; 441(1): 236-42, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24141116

RESUMEN

Caloric restriction mimetics (CRMs) have been developed to mimic the effects of caloric restriction (CR). However, research reports for the effects of CRMs are often times inconsistent across different research groups. Therefore, in this study, we compared seven identified CRMs which extend the lifespans of various organisms including caffeine, curcumin, dapsone, metformin, rapamycin, resveratrol, and spermidine to CR for mitochondrial function in a single model, Saccharomyces cerevisiae. In this organism, rapamycin extended chronological lifespan (CLS), but other CRMs failed to extend CLS. Rapamycin enhanced mitochondrial function like CR did, but other CRMs did not. Both CR and rapamycin worked on mitochondrial function, but they worked at different windows of time during the chronological aging process.


Asunto(s)
Restricción Calórica , Mitocondrias/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Metabolismo Energético/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Sirolimus/farmacología , Factores de Tiempo
7.
bioRxiv ; 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37205425

RESUMEN

Various cytokines have been implicated in cancer cachexia. One such cytokine is IL-6, which has been deemed a key cachectic factor in mice inoculated with the colon carcinoma 26 (C26) cells, one of the most widely used models of cancer cachexia. Here to test the causal role of IL-6 in cancer cachexia, we used CRISPR/Cas9 editing to knock out IL-6 in C26 cells. We found that growth of IL-6 KO C26 tumors was dramatically delayed. Most strikingly, while IL-6 KO tumors eventually reached the similar size as wild-type tumors, cachexia still took place, despite no elevation in circulating IL-6. We further showed an increase of immune cell populations in IL-6 KO tumors and the defective IL-6 KO tumor growth was rescued in immunodeficient mice. Thus, our results invalidated IL-6 as a necessary factor for causing cachexia in the C26 model and revealed instead its important role in regulating tumor growth via immune suppression.

8.
bioRxiv ; 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37873410

RESUMEN

The bacterial determinants that facilitate Mycobacterium tuberculosis (Mtb) adaptation to the human host environment are poorly characterized. We have sought to decipher the pressures facing the bacterium in vivo by assessing Mtb genes that are under positive selection in clinical isolates. One of the strongest targets of selection in the Mtb genome is lldD2 , which encodes a quinone-dependent L-lactate dehydrogenase (LldD2) that catalyzes the oxidation of lactate to pyruvate. Lactate accumulation is a salient feature of the intracellular environment during infection and lldD2 is essential for Mtb growth in macrophages. We determined the extent of lldD2 variation across a set of global clinical isolates and defined how prevalent mutations modulates Mtb fitness. We show the stepwise nature of lldD2 evolution that occurs as a result of ongoing lldD2 selection in the background of ancestral lineage defining mutations and demonstrate that the genetic evolution of lldD2 additively augments Mtb growth in lactate. Using quinone-dependent antibiotic susceptibility as a functional reporter, we also find that the evolved lldD2 mutations functionally increase the quinone-dependent activity of LldD2. Using 13 C-lactate metabolic flux tracing, we find that lldD2 is necessary for robust incorporation of lactate into central carbon metabolism. In the absence of lldD2 , label preferentially accumulates in methylglyoxal precursors dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P) and is associated with a discernible growth defect, providing experimental evidence for accumulated lactate toxicity via a methylglyoxal pathway that has been proposed previously. The evolved lldD2 variants increase lactate incorporation to pyruvate but also alter flux in the methylglyoxal pathway, suggesting both an anaplerotic and detoxification benefit to lldD2 evolution. We further show that the mycobacterial cell is transcriptionally sensitive to the changes associated with altered lldD2 activity which affect the expression of genes involved in cell wall lipid metabolism and the ESX-1 virulence system. Together, these data illustrate a multifunctional role of LldD2 that provide context for the selective advantage of lldD2 mutations in adapting to host stress.

9.
World J Mens Health ; 40(2): 316-329, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35021315

RESUMEN

PURPOSE: To build an age prediction model, we measured CD4+ and CD8+ cells, and humoral components in canine peripheral blood. MATERIALS AND METHODS: Large Belgian Malinois (BGM) and German Shepherd Dog (GSD) breeds (n=27), aged from 1 to 12 years, were used for this study. Peripheral bloods were obtained by venepuncture, then plasma and peripheral blood mononuclear cells (PBMCs) were separated immediately. Six myokines, including interleukin (IL)-6, IL-8, IL-15, leukemia inhibitory factor (LIF), growth differentiation factor 8 (GDF8), and GDF11 were measured from plasma and CD4+/CD8+ T-lymphocytes ratio were measured from PBMC. These parameters were then tested with age prediction models to find the best fit model. RESULTS: We found that the T-lymphocyte ratio (CD4+/CD8+) was significantly correlated with age (r=0.46, p=0.016). Among the six myokines, only GDF8 showed a significant correlation with age (r=0.52, p=0.005). Interestingly, these two markers showed better correlations in male dogs than females, and BGM breed than GSD. Using these two age biomarkers, we could obtain the best fit in a quadratic linear mixed model (r=0.77, p=3×10-6). CONCLUSIONS: Age prediction is a challenging task because of complication with biological age. Our quadratic linear mixed model using CD4+/CD8+ ratio and GDF8 level showed a meaningful age prediction.

10.
Exp Mol Med ; 53(6): 1092-1108, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34188179

RESUMEN

Senescent cells exhibit a reduced response to intrinsic and extrinsic stimuli. This diminished reaction may be explained by the disrupted transmission of nuclear signals. However, this hypothesis requires more evidence before it can be accepted as a mechanism of cellular senescence. A proteomic analysis of the cytoplasmic and nuclear fractions obtained from young and senescent cells revealed disruption of nucleocytoplasmic trafficking (NCT) as an essential feature of replicative senescence (RS) at the global level. Blocking NCT either chemically or genetically induced the acquisition of an RS-like senescence phenotype, named nuclear barrier-induced senescence (NBIS). A transcriptome analysis revealed that, among various types of cellular senescence, NBIS exhibited a gene expression pattern most similar to that of RS. Core proteomic and transcriptomic patterns common to both RS and NBIS included upregulation of the endocytosis-lysosome network and downregulation of NCT in senescent cells, patterns also observed in an aging yeast model. These results imply coordinated aging-dependent reduction in the transmission of extrinsic signals to the nucleus and in the nucleus-to-cytoplasm supply of proteins/RNAs. We further showed that the aging-associated decrease in Sp1 transcription factor expression was critical for the downregulation of NCT. Our results suggest that NBIS is a modality of cellular senescence that may represent the nature of physiological aging in eukaryotes.


Asunto(s)
Senescencia Celular , Proteómica , Núcleo Celular/metabolismo , Senescencia Celular/genética , Regulación hacia Abajo
11.
J Gerontol A Biol Sci Med Sci ; 75(8): 1448-1456, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-31541249

RESUMEN

Budding yeast generate heterogeneous cells that can be separated into two distinctive cell types: short-living low-density and long-living high-density (HD) cells by density gradient centrifugation. We found that ethanol and acetate induce formation of HD cells, and mitochondrial respiration is required. From their transcriptomes and metabolomes, we found upregulated differentially expressed genes in HD cells involved in the RGT2/RGT1 glucose sensing pathway and its downstream genes encoding hexose transporters. For HD cells, we determined an abundance of various carbon sources including glucose, lactate, pyruvate, trehalose, mannitol, mannose, and galactose. Other upregulated differentially expressed genes in HD cells were involved in the TORC1-SCH9 signaling pathway and its downstream genes involved in cytoplasmic translation. We also measured an abundance of free amino acids in HD cells including valine, proline, isoleucine, and glutamine. These characteristics of the HD cell transcriptome and metabolome may be important conditions for maintaining a long-living phenotype.


Asunto(s)
Acetatos/farmacología , Respiración de la Célula , Etanol/farmacología , Longevidad , Saccharomyces cerevisiae/citología , Senescencia Celular , ADN Mitocondrial/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Potencial de la Membrana Mitocondrial , Metaboloma , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/metabolismo
12.
Mol Cells ; 40(4): 307-313, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28427248

RESUMEN

Caloric restriction (CR) has been shown to extend lifespan and prevent cellular senescence in various species ranging from yeast to humans. Many effects of CR may contribute to extend lifespan. Specifically, CR prevents oxidative damage from reactive oxygen species (ROS) by enhancing mitochondrial function. In this study, we characterized 33 single electron transport chain (ETC) gene-deletion strains to identify CR-induced chronological lifespan (CLS) extension mechanisms. Interestingly, defects in 17 of these 33 ETC gene-deleted strains showed loss of both respiratory function and CR-induced CLS extension. On the contrary, the other 16 respiration-capable mutants showed increased CLS upon CR along with increased mitochondrial membrane potential (MMP) and intracellular adenosine triphosphate (ATP) levels, with decreased mitochondrial superoxide generation. We measured the same parameters in the 17 non-respiratory mutants upon CR. CR simultaneously increased MMP and mitochondrial superoxide generation without altering intracellular ATP levels. In conclusion, respiration is essential for CLS extension by CR and is important for balancing MMP, ROS, and ATP levels.


Asunto(s)
Senescencia Celular/fisiología , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Metabolismo Energético , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Respiración de la Célula/fisiología , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/genética , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo , Factores de Tiempo
13.
Mol Cells ; 38(12): 1054-63, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26608359

RESUMEN

Mitochondria play a crucial role in eukaryotic cells; the mitochondrial electron transport chain (ETC) generates adenosine triphosphate (ATP), which serves as an energy source for numerous critical cellular activities. However, the ETC also generates deleterious reactive oxygen species (ROS) as a natural byproduct of oxidative phosphorylation. ROS are considered the major cause of aging because they damage proteins, lipids, and DNA by oxidation. We analyzed the chronological life span, growth phenotype, mitochondrial membrane potential (MMP), and intracellular ATP and mitochondrial superoxide levels of 33 single ETC component-deleted strains during the chronological aging process. Among the ETC mutant strains, 14 (sdh1Δ, sdh2Δ, sdh4Δ, cor1Δ, cyt1Δ, qcr7Δ, qcr8Δ, rip1Δ, cox6Δ, cox7Δ, cox9Δ, atp4Δ, atp7Δ, and atp17Δ) showed a significantly shorter life span. The deleted genes encode important elements of the ETC components succinate dehydrogenase (complex II) and cytochrome c oxidase (complex IV), and some of the deletions lead to structural instability of the membrane-F1F0-ATP synthase due to mutations in the stator stalk (complex V). These short-lived strains generated higher superoxide levels and produced lower ATP levels without alteration of MMP. In summary, ETC mutations decreased the life span of yeast due to impaired mitochondrial efficiency.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Mitocondrias/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Adenosina Trifosfato/metabolismo , Eliminación de Gen , Potencial de la Membrana Mitocondrial , Mitocondrias/metabolismo , Mutación , Saccharomyces cerevisiae/genética , Superóxidos/metabolismo
14.
FEBS Lett ; 589(3): 349-57, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25541485

RESUMEN

Down-regulation of intracellular nutrient signal pathways was proposed to be a primary mechanism of caloric restriction (CR)-mediated lifespan extension. However, the link between lifespan and glucose sensors in the plasma membrane was poorly understood in yeast. Herein, a mutant that lacked glucose sensors (snf3Δrgt2Δ) had impaired glucose fermentation, showed decreased chronological lifespan (CLS), and reduced CLS extension by CR. The mutant also had reduced mitochondrial efficiency, as inferred by increased mitochondrial superoxide and decreased ATP levels. Mth1 and Std1, which are downstream effectors of the Snf3/Rgt2 pathway, were required for viability through mitochondrial function but not fermentative metabolism.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Longevidad/genética , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Saccharomyces cerevisiae/genética , Restricción Calórica , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Longevidad/fisiología , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Saccharomyces cerevisiae , Transducción de Señal/genética
15.
Exp Gerontol ; 48(12): 1455-68, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24126084

RESUMEN

Caloric restriction (CR) is the best-studied intervention known to delay aging and extend lifespan in evolutionarily distant organisms ranging from yeast to mammals in the laboratory. Although the effect of CR on lifespan extension has been investigated for nearly 80years, the molecular mechanisms of CR are still elusive. Consequently, it is important to understand the fundamental mechanisms of when and how lifespan is affected by CR. In this study, we first identified the time-windows during which CR assured cellular longevity by switching cells from culture media containing 2% or 0.5% glucose to water, which allows us to observe CR and non-calorically-restricted cells under the same conditions. We also constructed time-dependent gene expression profiles and selected 646 genes that showed significant changes and correlations with the lifespan-extending effect of CR. The positively correlated genes participated in transcriptional regulation, ribosomal RNA processing and nuclear genome stability, while the negatively correlated genes were involved in the regulation of several metabolic pathways, endoplasmic reticulum function, stress response and cell cycle progression. Furthermore, we discovered major upstream regulators of those significantly changed genes, including AZF1 (YOR113W), HSF1 (YGL073W) and XBP1 (YIL101C). Deletions of two genes, AZF1 and XBP1 (HSF1 is essential and was thus not tested), were confirmed to lessen the lifespan extension mediated by CR. The absence of these genes in the tor1Δ and ras2Δ backgrounds did show non-overlapping effects with regard to CLS, suggesting differences between the CR mechanism for Tor and Ras signaling.


Asunto(s)
Restricción Calórica , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Longevidad/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica/métodos , Glucosa/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Mutación , ARN de Hongos/metabolismo , ARN Ribosómico/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
16.
Cancer Biol Ther ; 10(4): 354-61, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20534983

RESUMEN

Activation of Janus kinases (JAKs) and Signal Transducers and Activators of Transcription (STATs) plays a crucial role in cell survival and proliferation. The JAK/STAT signaling pathway has received a great deal of attention as a therapeutic target for the treatment of cancer. Thus, the identification of a compound that blocks this pathway would contribute significantly to growth inhibition and apoptosis of tumor cells. The antitumor alkaloid camptothecin (CPT) may be useful in the treatment of certain cancer, but the effects of this drug on colon cancer cells remain largely undefined. The purpose of the present study was to characterize the effects of CPT on human colon cancer cells and to determine the cellular mechanisms involved in CPT-mediated cell inhibition. The cellular determinants for CPT activity were studied in six colon cancer cell lines; these cell lines exhibited natural differences in sensitivity to CPT and could be ranked according to increasing resistance levels in the order Lovo < SW48 < HCT116 < HCT8 < HT29 < WiDr. Our findings suggest that JAK2 is necessary for induction of apoptosis following CPT treatment. Inhibition of JAK2 and STAT3 Tyr705 phosphorylation decreased the expression of STAT3 downstream target genes such as Bcl-2, Bcl-x(L) and Mcl-1. Finally, we show that JAK2 mRNA expression to be a better determination for CPT sensitivity than the topoisomerase-I activity or mRNA expression.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Camptotecina/farmacología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Janus Quinasa 2/metabolismo , Factores de Transcripción STAT/metabolismo , Western Blotting , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , ADN-Topoisomerasas de Tipo I/metabolismo , Resistencia a Antineoplásicos , Técnica del Anticuerpo Fluorescente , Expresión Génica , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/genética , Fosforilación/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA