Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 327(1): G57-G69, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38713616

RESUMEN

Inflammatory bowel disease (IBD) encompasses several debilitating chronic gastrointestinal (GI) inflammatory disorders, including Crohn's disease and ulcerative colitis. In both conditions, mucosal inflammation is a key clinical presentation associated with altered serotonin (5-hydroxytryptamine or 5-HT) signaling. This altered 5-HT signaling is also found across various animal models of colitis. Of the 14 known receptor subtypes, 5-HT receptor type 7 (5-HT7) is one of the most recently discovered. We previously reported that blocking 5-HT signaling with either a selective 5-HT7 receptor antagonist (SB-269970) or genetic ablation alleviated intestinal inflammation in murine experimental models of colitis. Here, we developed novel antagonists, namely, MC-170073 and MC-230078, which target 5-HT7 receptors with high selectivity. We also investigated the in vivo efficacy of these antagonists in experimental colitis by using dextran sulfate sodium (DSS) and the transfer of CD4+CD45RBhigh T cells to induce intestinal inflammation. Inhibition of 5-HT7 receptor signaling with the antagonists, MC-170073 and MC-230078, ameliorated intestinal inflammation in both acute and chronic colitis models, which was accompanied by lower histopathological damage and diminished levels of proinflammatory cytokines compared with vehicle-treated controls. Together, the data reveal that the pharmacological inhibition of 5-HT7 receptors by these selective antagonists ameliorates the severity of colitis across various experimental models and may, in the future, serve as a potential treatment option for patients with IBD. In addition, these findings support that 5-HT7 is a viable therapeutic target for IBD.NEW & NOTEWORTHY This study demonstrates that the novel highly selective 5-HT7 receptor antagonists, MC-170073 and MC-230078, significantly alleviated the severity of colitis across models of experimental colitis. These findings suggest that inhibition of 5-HT7 receptor signaling by these new antagonists may serve as an alternative mode of treatment to diminish symptomology in those with inflammatory bowel disease.


Asunto(s)
Colitis , Receptores de Serotonina , Antagonistas de la Serotonina , Animales , Receptores de Serotonina/metabolismo , Receptores de Serotonina/efectos de los fármacos , Colitis/tratamiento farmacológico , Colitis/inmunología , Colitis/patología , Ratones , Antagonistas de la Serotonina/farmacología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Sulfato de Dextran , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/inmunología , Transducción de Señal/efectos de los fármacos , Índice de Severidad de la Enfermedad , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Colon/inmunología , Masculino
2.
Am J Physiol Cell Physiol ; 323(2): C550-C555, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35759441

RESUMEN

Serotonin, also known as 5-hydroxytryptamine (5-HT), is an evolutionarily ancient and phylogenetically conserved monoamine that regulates multifaceted physiological functions in mammals. 5-HT was, at one time, most extensively studied as a neurotransmitter within the central nervous system but is now known to regulate nonneuronal functions including immune responses in an autocrine-paracrine-endocrine manner. Compelling evidence from intervention studies using germ-free mice or antibiotic-associated microbiota perturbation suggests that novel interactions between 5-HT and the gut microbiota are essential in maintaining intestinal homeostasis. Importantly, recent studies reveal that bidirectional host-microbial interactions mediated by the host serotonergic system can promote distinct changes within the gut microbiota. These changes may potentially lead to a state known as "dysbiosis" that has been strongly associated with various gut pathologies including inflammatory bowel disease (IBD). In this review, we update the current understanding of host-microbiota interaction by focusing on the impact of peripheral 5-HT signaling within this dynamic. We also briefly highlight key environmental risk factors for IBD, such as the Western diet, and draw attention to the interaction of synthetic food colorants with 5-HT signaling that may facilitate future research.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Animales , Homeostasis , Interacciones Microbiota-Huesped , Mamíferos , Ratones , Serotonina
3.
Am J Physiol Endocrinol Metab ; 323(1): E80-E091, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35575233

RESUMEN

Obesogens are synthetic, environmental chemicals that can disrupt endocrine control of metabolism and contribute to the risk of obesity and metabolic disease. Bisphenol A (BPA) is one of the most studied obesogens. There is considerable evidence that BPA exposure is associated with weight gain, increased adiposity, poor blood glucose control, and nonalcoholic fatty liver disease in animal models and human populations. Increased usage of structural analogs of BPA has occurred in response to legislation banning their use in some commercial products. However, BPA analogs may also cause some of the same metabolic impairments because of common mechanisms of action. One key effector that is altered by BPA and its analogs is serotonin, however, it is unknown if BPA-induced changes in peripheral serotonin pathways underlie metabolic perturbations seen with BPA exposure. Upon ingestion, BPA and its analogs act as endocrine-disrupting chemicals in the gastrointestinal tract to influence serotonin production by the gut, where over 95% of serotonin is produced. The purpose of this review is to evaluate how BPA and its analogs alter gut serotonin regulation and then discuss how disruption of serotonergic networks influences host metabolism. We also provide evidence that BPA and its analogs enhance serotonin production in gut enterochromaffin cells. Taken together, we propose that BPA and many BPA analogs represent endocrine-disrupting chemicals that can influence host metabolism through the endogenous production of gut-derived factors, such as serotonin.


Asunto(s)
Disruptores Endocrinos , Serotonina , Animales , Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Obesidad/inducido químicamente , Fenoles/toxicidad
4.
J Immunol ; 202(10): 3041-3052, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30952815

RESUMEN

Serotonin (5-hydroxytryptamine [5-HT]) is a key enteric signaling molecule that mediates various physiological processes in the gut. Enterochromaffin (EC) cells in the mucosal layer of the gut are the main source of 5-HT in the body and are situated in close proximity to the gut microbiota. In this study, we identify a pivotal role of TLR2 in 5-HT production in the gut. Antibiotic treatment reduces EC cell numbers and 5-HT levels in naive C57BL/6 mice, which is associated with downregulation of TLR2 expression but not TLR1 or TLR4. TLR2-deficient (Tlr2 -/-) and Myd88 -/- mice express lower EC cell numbers and 5-HT levels, whereas treatment with TLR2/1 agonist upregulates 5-HT production in irradiated C57BL/6 mice, which are reconstituted with Tlr2 -/- bone marrow cells, and in germ-free mice. Human EC cell line (BON-1 cells) release higher 5-HT upon TLR2/1 agonist via NF-κB pathway. Tlr2 -/- mice and anti-TLR2 Ab-treated mice infected with enteric parasite, Trichuris muris, exhibited attenuated 5-HT production, compared with infected wild-type mice. Moreover, excretory-secretory products from T. muris induce higher 5-HT production in BON-1 cells via TLR2 in a dose-dependent manner, whereby the effect of excretory-secretory products is abrogated by TLR2 antagonist. These findings not only suggest an important role of TLR2 in mucosal 5-HT production in the gut by resident microbiota as well as by a nematode parasite but also provide, to our knowledge, novel information on the potential benefits of targeting TLR2 in various gut disorders that exhibit aberrant 5-HT signaling.


Asunto(s)
Células Enterocromafines/inmunología , Serotonina/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 2/inmunología , Tricuriasis/inmunología , Trichuris/inmunología , Animales , Línea Celular , Células Enterocromafines/patología , Microbioma Gastrointestinal/inmunología , Humanos , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , Serotonina/genética , Transducción de Señal/genética , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología , Tricuriasis/genética , Tricuriasis/patología
5.
Molecules ; 26(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199466

RESUMEN

Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract with an incompletely understood pathogenesis. Long-standing colitis is associated with increased risk of colon cancer. Despite the availability of various anti-inflammatory and immunomodulatory drugs, many patients fail to respond to pharmacologic therapy and some experience drug-induced adverse events. Dietary supplements, particularly saffron (Crocus sativus), have recently gained an appreciable attention in alleviating some symptoms of digestive diseases. In our study, we investigated whether saffron may have a prophylactic effect in a murine colitis model. Saffron pre-treatment improved the gross and histopathological characteristics of the colonic mucosa in murine experimental colitis. Treatment with saffron showed a significant amelioration of colitis when compared to the vehicle-treated mice group. Saffron treatment significantly decreased secretion of serotonin and pro-inflammatory cytokines, such as TNF-α, IL-1ß, and IL-6, in the colon tissues by suppressing the nuclear translocation of NF-κB. The gut microbiome analysis revealed distinct clusters in the saffron-treated and untreated mice in dextran sulfate sodium (DSS)-induced colitis by visualization of the Bray-Curtis diversity by principal coordinates analysis (PCoA). Furthermore, we observed that, at the operational taxonomic unit (OTU) level, Cyanobacteria were depleted, while short-chain fatty acids (SCFAs), such as isobutyric acid, acetic acid, and propionic acid, were increased in saffron-treated mice. Our data suggest that pre-treatment with saffron inhibits DSS-induced pro-inflammatory cytokine secretion, modulates gut microbiota composition, prevents the depletion of SCFAs, and reduces the susceptibility to colitis.


Asunto(s)
Bacterias/clasificación , Productos Biológicos/administración & dosificación , Colitis/tratamiento farmacológico , Crocus/química , Sulfato de Dextran/efectos adversos , Microbiota/efectos de los fármacos , Administración Oral , Animales , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Productos Biológicos/farmacología , Colitis/inducido químicamente , Colitis/inmunología , Colitis/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Masculino , Ratones , Ratones Endogámicos C57BL , Filogenia , Profilaxis Pre-Exposición , Serotonina/metabolismo , Resultado del Tratamiento
6.
Biomedicines ; 11(5)2023 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-37239114

RESUMEN

Macrophage adenosine monophosphate-activated protein kinase (AMPK) limits the development of experimental colitis. AMPK activation inhibits NADPH oxidase (NOX) 2 expression, reactive oxygen species (ROS) generation, and pro-inflammatory cytokine secretion in macrophages during inflammation, while increased NOX2 expression is reported in experimental models of colitis and inflammatory bowel disease (IBD) patients. Although there are reductions in AMPK activity in IBD, it remains unclear whether targeted inhibition of NOX2 in the presence of defective AMPK can reduce the severity of colitis. Here, we investigate whether the inhibition of NOX2 ameliorates colitis in mice independent of AMPK activation. Our study identified that VAS2870 (a pan-Nox inhibitor) alleviated dextran sodium sulfate (DSS)-induced colitis in macrophage-specific AMPKß1-deficient (AMPKß1LysM) mice. Additionally, VAS2870 blocked LPS-induced TLR-4 and NOX2 expression, ROS production, nuclear translocation of NF-κB, and pro-inflammatory cytokine secretion in bone marrow-derived macrophages (BMDMs) from AMPKß1LysM mice, whereas sodium salicylate (SS; AMPK ß1 activator) did not. Both VAS2870 and SS inhibited LPS-induced NOX2 expression, ROS production, and pro-inflammatory cytokine secretions in bone marrow-derived macrophages (BMDMs) from wildtype (AMPKß1fl/fl) mice but only VAS2870 inhibited these effects of LPSs in AMPKß1LysM BMDMs. Furthermore, in macrophage cells (RAW 264.7), both SS and VAS2870 inhibited ROS production and the secretion of pro-inflammatory cytokines and reversed the impaired autophagy induced by LPSs. These data suggest that inhibiting NOX2 can reduce inflammation independent of AMPK in colitis.

7.
Nat Commun ; 13(1): 7617, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539404

RESUMEN

Chemicals in food are widely used leading to significant human exposure. Allura Red AC (AR) is a highly common synthetic colorant; however, little is known about its impact on colitis. Here, we show chronic exposure of AR at a dose found in commonly consumed dietary products exacerbates experimental models of colitis in mice. While intermittent exposure is more akin to a typical human exposure, intermittent exposure to AR in mice for 12 weeks, does not influence susceptibility to colitis. However, exposure to AR during early life primes mice to heightened susceptibility to colitis. In addition, chronic exposure to AR induces mild colitis, which is associated with elevated colonic serotonin (5-hydroxytryptamine; 5-HT) levels and impairment of the epithelial barrier function via myosin light chain kinase (MLCK). Importantly, chronic exposure to AR does not influence colitis susceptibility in mice lacking tryptophan hydroxylase 1 (TPH1), the rate limiting enzyme for 5-HT biosynthesis. Cecal transfer of the perturbed gut microbiota by AR exposure worsens colitis severity in the recipient germ-free (GF) mice. Furthermore, chronic AR exposure elevates colonic 5-HT levels in naïve GF mice. Though it remains unknown whether AR has similar effects in humans, our study reveals that chronic long-term exposure to a common synthetic colorant promotes experimental colitis via colonic 5-HT in gut microbiota-dependent and -independent pathway in mice.


Asunto(s)
Colitis , Colorantes de Alimentos , Humanos , Animales , Ratones , Serotonina/metabolismo , Colorantes de Alimentos/toxicidad , Colorantes de Alimentos/metabolismo , Colitis/inducido químicamente , Colitis/metabolismo , Intestinos , Colon/metabolismo , Ratones Endogámicos C57BL , Mucosa Intestinal/metabolismo , Sulfato de Dextran
8.
Pathogens ; 10(8)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34451389

RESUMEN

Several parasites have evolved to survive in the human intestinal tract and over 1 billion people around the world, specifically in developing countries, are infected with enteric helminths. Trichuris trichiura is one of the world's most common intestinal parasites that causes human parasitic infections. Trichuris muris, as an immunologically well-defined mouse model of T. trichiura, is extensively used to study different aspects of the innate and adaptive components of the immune system. Studies on T. muris model offer insights into understanding host immunity, since this parasite generates two distinct immune responses in resistant and susceptible strains of mouse. Apart from the immune cells, T. muris infection also influences various components of the intestinal tract, especially the gut microbiota, mucus layer, epithelial cells and smooth muscle cells. Here, we reviewed the different immune responses generated by innate and adaptive immune components during acute and chronic T. muris infections. Furthermore, we discussed the importance of studying T. muris model in understanding host-parasite interaction in the context of alteration in the host's microbiota, intestinal barrier, inflammation, and host defense, and in parasite infection-mediated modulation of other immune and inflammatory diseases.

9.
Sci Adv ; 7(45): eabi6442, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34739317

RESUMEN

Autophagy, an essential intracellular recycling process, is linked to the pathogenesis of various diseases including Crohn's disease (CD). Factors that lead to the development of impaired autophagy during intestinal inflammation remain largely unexplored. Here, we report the impact of the interaction between serotonin [5-hydroxytryptamine;(5-HT)] and autophagy in colitis in mouse and human studies. In mice, increased gut 5-HT inhibited autophagy and led to enhanced colitis susceptibility. Reciprocally, mice with reduced 5-HT exhibited up-regulated autophagy via the mammalian target of rapamycin pathway, which resulted in significantly decreased colitis. Deletion of autophagy gene, Atg7, in an epithelial-specific manner, in concert with reduced 5-HT, promoted the development of a colitogenic microbiota and abolished the protective effects conferred by reduced 5-HT. Notably, in control and patient peripheral blood mononuclear cells, we uncovered that 5-HT treatment inhibited autophagy. Our findings suggest 5-HT as a previously unidentified therapeutic target in intestinal inflammatory disorders such as CD that exhibits dysregulated autophagy.

10.
Inflamm Bowel Dis ; 27(6): 914-926, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33252129

RESUMEN

BACKGROUND: Inflammatory bowel diseases are the most common chronic intestinal inflammatory conditions, and their incidence has shown a dramatic increase in recent decades. Limited efficacy and questionable safety profiles with existing therapies suggest the need for better targeting of therapeutic strategies. Adenosine monophosphate-activated protein kinase (AMPK) is a key regulator of cellular metabolism and has been implicated in intestinal inflammation. Macrophages execute an important role in the generation of intestinal inflammation. Impaired AMPK in macrophages has been shown to be associated with higher production of proinflammatory cytokines; however, the role of macrophage AMPK in intestinal inflammation and the mechanism by which it regulates inflammation remain to be determined. In this study, we investigated the role of AMPK with a specific focus on macrophages in the pathogenesis of intestinal inflammation. METHODS: A dextran sodium sulfate-induced colitis model was used to assess the disease activity index, histological scores, macroscopic scores, and myeloperoxidase level. Proinflammatory cytokines such as tumor necrosis factor-α, interleukin-6, and interleukin-1ß were measured by enzyme-linked immunosorbent assay. Transient transfection of AMPKß1 and LC3-II siRNA in RAW 264.7 cells was performed to elucidate the regulation of autophagy by AMPK. The expression of p-AMPK, AMPK, and autophagy markers (eg, LC3-II, p62, Beclin-1, and Atg-12) was analyzed by Western blot. RESULTS: Genetic deletion of AMPKß1 in macrophages upregulated the production of proinflammatory cytokines, aggravated the severity of dextran sodium sulfate-induced colitis in mice, which was associated with an increased nuclear translocation of nuclear factor-κB, and impaired autophagy both in vitro and in vivo. Notably, the commonly used anti-inflammatory 5-aminosalicylic acid (ie, mesalazine) and sodium salicylate ameliorated dextran sodium sulfate-induced colitis through the activation of macrophage AMPK targeting the ß1 subunit. CONCLUSIONS: Together, these data suggest that the development of therapeutic agents targeting AMPKß1 may be effective in the treatment of intestinal inflammatory conditions including inflammatory bowel disease.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Colitis , Macrófagos/enzimología , Salicilatos/farmacología , Proteínas Quinasas Activadas por AMP/genética , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Citocinas/genética , Sulfato de Dextran/toxicidad , Inflamación/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7
11.
Front Immunol ; 11: 2054, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013869

RESUMEN

Throughout the gastrointestinal (GI) tract, a distinct mucus layer composed of highly glycosylated proteins called mucins plays an essential role in providing lubrication for the passage of food, participating in cell signaling pathways and protecting the host epithelium from commensal microorganisms and invading pathogens, as well as toxins and other environmental irritants. These mucins can be broadly classified into either secreted gel-forming mucins, those that provide the structural backbone for the mucus barrier, or transmembrane mucins, those that form the glycocalyx layer covering the underlying epithelial cells. Goblet cells dispersed among the intestinal epithelial cells are chiefly responsible for the synthesis and secretion of mucins within the gut and are heavily influenced by interactions with the immune system. Evidence from both clinical and animal studies have indicated that several GI conditions, including inflammatory bowel disease (IBD), colorectal cancer, and numerous enteric infections are accompanied by considerable changes in mucin quality and quantity. These changes include, but are not limited to, impaired goblet cell function, synthesis dysregulation, and altered post-translational modifications. The current review aims to highlight the structural and functional features as well as the production and immunological regulation of mucins and the impact these key elements have within the context of barrier function and host defense in intestinal inflammation.


Asunto(s)
Enfermedades Gastrointestinales/inmunología , Células Caliciformes/fisiología , Inflamación/inmunología , Mucosa Intestinal/metabolismo , Mucinas/metabolismo , Animales , Humanos , Inmunidad Mucosa , Modelos Animales
12.
Cell Mol Gastroenterol Hepatol ; 7(4): 709-728, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30716420

RESUMEN

BACKGROUND & AIMS: Serotonin (5-hydroxytryptamine [5-HT]) is synthesized mainly within enterochromaffin (EC) cells in the gut, and tryptophan hydroxylase 1 (Tph1) is the rate-limiting enzyme for 5-HT synthesis in EC cells. Accumulating evidence suggests the importance of gut microbiota in intestinal inflammation. Considering the close proximity of EC cells and the microbes, we investigated the influence of gut-derived 5-HT on the microbiota and the susceptibility to colitis. METHODS: Gut microbiota of Tph1-/- and Tph1+/- mice were investigated by deep sequencing. Direct influence of 5-HT on bacteria was assessed by using in vitro system of isolated commensals. The indirect influence of 5-HT on microbiota was assessed by measuring antimicrobial peptides, specifically ß-defensins, in the colon of mice and HT-29 colonic epithelial cells. The impact of gut microbiota on the development of dextran sulfate sodium-induced colitis was assessed by transferring gut microbiota from Tph1-/- mice to Tph1+/- littermates and vice versa, as well as in germ-free mice. RESULTS: A significant difference in microbial composition between Tph1-/- and Tph1+/- littermates was observed. 5-HT directly stimulated and inhibited the growth of commensal bacteria in vitro, exhibiting a concentration-dependent and species-specific effect. 5-HT also inhibited ß-defensin production by HT-29 cells. Microbial transfer from Tph1-/- to Tph1+/- littermates and vice versa altered colitis severity, with microbiota from Tph1-/- mice mediating the protective effects. Furthermore, germ-free mice colonized with microbiota from Tph1-/- mice exhibited less severe dextran sulfate sodium-induced colitis. CONCLUSIONS: These findings demonstrate a novel role of gut-derived 5-HT in shaping gut microbiota composition in relation to susceptibility to colitis, identifying 5-HT-microbiota axis as a potential new therapeutic target in intestinal inflammatory disorders.


Asunto(s)
Colitis/inmunología , Colitis/patología , Microbioma Gastrointestinal , Intestinos/inmunología , Serotonina/metabolismo , Transducción de Señal , Animales , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Colon/patología , Sulfato de Dextran/administración & dosificación , Susceptibilidad a Enfermedades , Regulación hacia Abajo/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Vida Libre de Gérmenes , Heterocigoto , Inflamación/patología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Intestinos/patología , Masculino , Ratones Endogámicos C57BL , PPAR gamma/metabolismo , Receptores de Serotonina/metabolismo , Transducción de Señal/efectos de los fármacos , Triptófano Hidroxilasa/deficiencia , Triptófano Hidroxilasa/metabolismo , Regulación hacia Arriba/efectos de los fármacos , beta-Defensinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA