Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 209(12): 1463-1476, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358857

RESUMEN

Rationale: Acute cellular rejection (ACR) after lung transplant is a leading risk factor for chronic lung allograft dysfunction. Prior studies have demonstrated dynamic microbial changes occurring within the allograft and gut that influence local adaptive and innate immune responses. However, the lung microbiome's overall impact on ACR risk remains poorly understood. Objectives: To evaluate whether temporal changes in microbial signatures were associated with the development of ACR. Methods: We performed cross-sectional and longitudinal analyses (joint modeling of longitudinal and time-to-event data and trajectory comparisons) of 16S rRNA gene sequencing results derived from lung transplant recipient lower airway samples collected at multiple time points. Measurements and Main Results: Among 103 lung transplant recipients, 25 (24.3%) developed ACR. In comparing samples acquired 1 month after transplant, subjects who never developed ACR demonstrated lower airway enrichment with several oral commensals (e.g., Prevotella and Veillonella spp.) than those with current or future (beyond 1 mo) ACR. However, a subgroup analysis of those who developed ACR beyond 1 month revealed delayed enrichment with oral commensals occurring at the time of ACR diagnosis compared with baseline, when enrichment with more traditionally pathogenic taxa was present. In longitudinal models, dynamic changes in α-diversity (characterized by an initial decrease and a subsequent increase) and in the taxonomic trajectories of numerous oral commensals were more commonly observed in subjects with ACR. Conclusions: Dynamic changes in the lower airway microbiota are associated with the development of ACR, supporting its potential role as a useful biomarker or in ACR pathogenesis.


Asunto(s)
Rechazo de Injerto , Trasplante de Pulmón , Humanos , Trasplante de Pulmón/efectos adversos , Masculino , Rechazo de Injerto/microbiología , Femenino , Persona de Mediana Edad , Estudios Longitudinales , Estudios Transversales , Adulto , Microbiota , ARN Ribosómico 16S/genética , Pulmón/microbiología , Anciano , Enfermedad Aguda
2.
Am J Respir Crit Care Med ; 208(10): 1101-1114, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37677136

RESUMEN

Rationale: Chronic obstructive pulmonary disease (COPD) is associated with high morbidity, mortality, and healthcare costs. Cigarette smoke is a causative factor; however, not all heavy smokers develop COPD. Microbial colonization and infections are contributing factors to disease progression in advanced stages. Objectives: We investigated whether lower airway dysbiosis occurs in mild-to-moderate COPD and analyzed possible mechanistic contributions to COPD pathogenesis. Methods: We recruited 57 patients with a >10 pack-year smoking history: 26 had physiological evidence of COPD, and 31 had normal lung function (smoker control subjects). Bronchoscopy sampled the upper airways, lower airways, and environmental background. Samples were analyzed by 16S rRNA gene sequencing, whole genome, RNA metatranscriptome, and host RNA transcriptome. A preclinical mouse model was used to evaluate the contributions of cigarette smoke and dysbiosis on lower airway inflammatory injury. Measurements and Main Results: Compared with smoker control subjects, microbiome analyses showed that the lower airways of subjects with COPD were enriched with common oral commensals. The lower airway host transcriptomics demonstrated differences in markers of inflammation and tumorigenesis, such as upregulation of IL-17, IL-6, ERK/MAPK, PI3K, MUC1, and MUC4 in mild-to-moderate COPD. Finally, in a preclinical murine model exposed to cigarette smoke, lower airway dysbiosis with common oral commensals augments the inflammatory injury, revealing transcriptomic signatures similar to those observed in human subjects with COPD. Conclusions: Lower airway dysbiosis in the setting of smoke exposure contributes to inflammatory injury early in COPD. Targeting the lower airway microbiome in combination with smoking cessation may be of potential therapeutic relevance.


Asunto(s)
Lesión Pulmonar , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Animales , Ratones , Disbiosis/complicaciones , ARN Ribosómico 16S , Enfermedad Pulmonar Obstructiva Crónica/genética , Inflamación/complicaciones , Lesión Pulmonar/complicaciones , Pulmón/patología
3.
Dev Dyn ; 250(6): 866-879, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33587313

RESUMEN

BACKGROUND: Ambystoma mexicanum, the axolotl salamander, is a classic model organism used to study vertebrate regeneration. It is assumed that axolotls regenerate most tissues, but the exploration of lung regeneration has not been performed until now. RESULTS: Unlike the blastema-based response used during appendage regeneration, lung amputation led to organ-wide proliferation. Pneumocytes and mesenchymal cells responded to injury by increased proliferation throughout the injured lung, which led to a recovery in lung mass and morphology by 56 days post-amputation. Receptors associated with the Neuregulin signaling pathway were upregulated at one and 3 weeks post lung amputation. We show expression of the ligand, neuregulin, in the I/X cranial nerve that innervates the lung and cells within the lung. Supplemental administration of Neuregulin peptide induced widespread proliferation in the lung similar to an injury response, suggesting that neuregulin signaling may play a significant role during lung regeneration. CONCLUSION: Our study characterizes axolotl lung regeneration. We show that the lung responds to injury by an organ-wide proliferative response of multiple cell types, including pneumocytes, to recover lung mass.


Asunto(s)
Ambystoma mexicanum/fisiología , Proliferación Celular/fisiología , Lesión Pulmonar/fisiopatología , Pulmón/fisiología , Regeneración/fisiología , Animales , Pulmón/metabolismo , Lesión Pulmonar/metabolismo , Neurregulinas/metabolismo , Transducción de Señal/fisiología , Regulación hacia Arriba
4.
ERJ Open Res ; 10(4)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38978558

RESUMEN

Introduction: Mounting evidence indicates that an individual's humoral adaptive immune response plays a critical role in the setting of SARS-CoV-2 infection, and that the efficiency of the response correlates with disease severity. The relationship between the adaptive immune dynamics in the lower airways with those in the systemic circulation, and how these relate to an individual's clinical response to SARS-CoV-2 infection, are less understood and are the focus of this study. Material and methods: We investigated the adaptive immune response to SARS-CoV-2 in paired samples from the lower airways and blood from 27 critically ill patients during the first wave of the pandemic (median time from symptom onset to intubation 11 days). Measurements included clinical outcomes (mortality), bronchoalveolar lavage fluid (BALF) and blood specimen antibody levels, and BALF viral load. Results: While there was heterogeneity in the levels of the SARS-CoV-2-specific antibodies, we unexpectedly found that some BALF specimens displayed higher levels than the paired concurrent plasma samples, despite the known dilutional effects common in BALF samples. We found that survivors had higher levels of anti-spike, anti-spike-N-terminal domain and anti-spike-receptor-binding domain IgG antibodies in their BALF (p<0.05), while there was no such association with antibody levels in the systemic circulation. Discussion: Our data highlight the critical role of local adaptive immunity in the airways as a key defence mechanism against primary SARS-CoV-2 infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA