Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Comput Aided Mol Des ; 35(3): 271-284, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33506360

RESUMEN

Many molecular simulation methods use force fields to help model and simulate molecules and their behavior in various environments. Force fields are sets of functions and parameters used to calculate the potential energy of a chemical system as a function of the atomic coordinates. Despite the widespread use of force fields, their inadequacies are often thought to contribute to systematic errors in molecular simulations. Furthermore, different force fields tend to give varying results on the same systems with the same simulation settings. Here, we present a pipeline for comparing the geometries of small molecule conformers. We aimed to identify molecules or chemistries that are particularly informative for future force field development because they display inconsistencies between force fields. We applied our pipeline to a subset of the eMolecules database, and highlighted molecules that appear to be parameterized inconsistently across different force fields. We then identified over-represented functional groups in these molecule sets. The molecules and moieties identified by this pipeline may be particularly helpful for future force field parameterization.


Asunto(s)
Compuestos Aza/química , Compuestos Orgánicos/química , Bases de Datos de Compuestos Químicos , Modelos Moleculares , Conformación Molecular , Fenómenos Físicos , Teoría Cuántica , Programas Informáticos , Relación Estructura-Actividad , Termodinámica
2.
J Chem Eng Data ; 62(5): 1559-1569, 2017 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-29056756

RESUMEN

Solvation free energies can now be calculated precisely from molecular simulations, providing a valuable test of the energy functions underlying these simulations. Here, we briefly review "alchemical" approaches for calculating the solvation free energies of small, neutral organic molecules from molecular simulations, and illustrate by applying them to calculate aqueous solvation free energies (hydration free energies). These approaches use a non-physical pathway to compute free energy differences from a simulation or set of simulations and appear to be a particularly robust and general-purpose approach for this task. We also present an update (version 0.5) to our FreeSolv database of experimental and calculated hydration free energies of neutral compounds and provide input files in formats for several simulation packages. This revision to FreeSolv provides calculated values generated with a single protocol and software version, rather than the heterogeneous protocols used in the prior version of the database. We also further update the database to provide calculated enthalpies and entropies of hydration and some experimental enthalpies and entropies, as well as electrostatic and nonpolar components of solvation free energies.

3.
J Chem Theory Comput ; 12(8): 4015-24, 2016 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-27434695

RESUMEN

Partition coefficients describe how a solute is distributed between two immiscible solvents. They are used in drug design as a measure of a solute's hydrophobicity and a proxy for its membrane permeability. We calculate partition coefficients from transfer free energies using molecular dynamics simulations in explicit solvent. Setup is done by our new Solvation Toolkit which automates the process of creating input files for any combination of solutes and solvents for many popular molecular dynamics software packages. We calculate partition coefficients between octanol/water and cyclohexane/water with the Generalized AMBER Force Field (GAFF) and the Dielectric Corrected GAFF (GAFF-DC). With similar methods in the past we found a root-mean-squared error (RMSE) of 6.3 kJ/mol in hydration free energies which would correspond to an error of around 1.6 log units in partition coefficients if solvation free energies in both solvents were estimated with comparable accuracy. Here we find an overall RMSE of about 1.2 log units with both force fields. Results from GAFF and GAFF-DC seem to exhibit systematic biases in opposite directions for calculated cyclohexane/water partition coefficients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA