RESUMEN
The genus Phytopythium (Peronosporales) has been described, but a complete circumscription has not yet been presented. In the present paper we provide molecular-based evidence that members of Pythium clade K as described by Lévesque & de Cock (2004) belong to Phytopythium. Maximum likelihood and Bayesian phylogenetic analysis of the nuclear ribosomal DNA (LSU and SSU) and mitochondrial DNA cytochrome oxidase subunit 1 (COI) as well as statistical analyses of pairwise distances strongly support the status of Phytopythium as a separate phylogenetic entity. Phytopythium is morphologically intermediate between the genera Phytophthora and Pythium. It is unique in having papillate, internally proliferating sporangia and cylindrical or lobate antheridia. The formal transfer of clade K species to Phytopythium and a comparison with morphologically similar species of the genera Pythium and Phytophthora is presented. A new species is described, Phytopythium mirpurense.
RESUMEN
The aim of this study was to assess potential candidate gene regions and corresponding universal primer pairs as secondary DNA barcodes for the fungal kingdom, additional to ITS rDNA as primary barcode. Amplification efficiencies of 14 (partially) universal primer pairs targeting eight genetic markers were tested across > 1 500 species (1 931 strains or specimens) and the outcomes of almost twenty thousand (19 577) polymerase chain reactions were evaluated. We tested several well-known primer pairs that amplify: i) sections of the nuclear ribosomal RNA gene large subunit (D1-D2 domains of 26/28S); ii) the complete internal transcribed spacer region (ITS1/2); iii) partial ß -tubulin II (TUB2); iv) γ-actin (ACT); v) translation elongation factor 1-α (TEF1α); and vi) the second largest subunit of RNA-polymerase II (partial RPB2, section 5-6). Their PCR efficiencies were compared with novel candidate primers corresponding to: i) the fungal-specific translation elongation factor 3 (TEF3); ii) a small ribosomal protein necessary for t-RNA docking; iii) the 60S L10 (L1) RP; iv) DNA topoisomerase I (TOPI); v) phosphoglycerate kinase (PGK); vi) hypothetical protein LNS2; and vii) alternative sections of TEF1α. Results showed that several gene sections are accessible to universal primers (or primers universal for phyla) yielding a single PCR-product. Barcode gap and multi-dimensional scaling analyses revealed that some of the tested candidate markers have universal properties providing adequate infra- and inter-specific variation that make them attractive barcodes for species identification. Among these gene sections, a novel high fidelity primer pair for TEF1α, already widely used as a phylogenetic marker in mycology, has potential as a supplementary DNA barcode with superior resolution to ITS. Both TOPI and PGK show promise for the Ascomycota, while TOPI and LNS2 are attractive for the Pucciniomycotina, for which universal primers for ribosomal subunits often fail.
RESUMEN
Novel species of fungi described in the present study include the following from Australia: Neoseptorioides eucalypti gen. & sp. nov. from Eucalyptus radiata leaves, Phytophthora gondwanensis from soil, Diaporthe tulliensis from rotted stem ends of Theobroma cacao fruit, Diaporthe vawdreyi from fruit rot of Psidium guajava, Magnaporthiopsis agrostidis from rotted roots of Agrostis stolonifera and Semifissispora natalis from Eucalyptus leaf litter. Furthermore, Neopestalotiopsis egyptiaca is described from Mangifera indica leaves (Egypt), Roussoella mexicana from Coffea arabica leaves (Mexico), Calonectria monticola from soil (Thailand), Hygrocybe jackmanii from littoral sand dunes (Canada), Lindgomyces madisonensis from submerged decorticated wood (USA), Neofabraea brasiliensis from Malus domestica (Brazil), Geastrum diosiae from litter (Argentina), Ganoderma wiiroense on angiosperms (Ghana), Arthrinium gutiae from the gut of a grasshopper (India), Pyrenochaeta telephoni from the screen of a mobile phone (India) and Xenoleptographium phialoconidium gen. & sp. nov. on exposed xylem tissues of Gmelina arborea (Indonesia). Several novelties are introduced from Spain, namely Psathyrella complutensis on loamy soil, Chlorophyllum lusitanicum on nitrified grasslands (incl. Chlorophyllum arizonicum comb. nov.), Aspergillus citocrescens from cave sediment and Lotinia verna gen. & sp. nov. from muddy soil. Novel foliicolous taxa from South Africa include Phyllosticta carissicola from Carissa macrocarpa, Pseudopyricularia hagahagae from Cyperaceae and Zeloasperisporium searsiae from Searsia chirindensis. Furthermore, Neophaeococcomyces is introduced as a novel genus, with two new combinations, N. aloes and N. catenatus. Several foliicolous novelties are recorded from La Réunion, France, namely Ochroconis pandanicola from Pandanus utilis, Neosulcatispora agaves gen. & sp. nov. from Agave vera-cruz, Pilidium eucalyptorum from Eucalyptus robusta, Strelitziana syzygii from Syzygium jambos (incl. Strelitzianaceae fam. nov.) and Pseudobeltrania ocoteae from Ocotea obtusata (Beltraniaceae emend.). Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.
RESUMEN
The use of a DNA-based method for quantifying airborne inoculum of Botrytis squamosa, a damaging pathogen of onion, was investigated. A method for purifying DNA from conidia collected using rotating-arm samplers and quantifying it using a TaqMan real-time quantitative polymerase chain reaction (qPCR) assay is described. The sensitivity of the qPCR assay was high, with a detection limit of 2 conidia/rod. A linear relationship between numbers of conidia counted with a compound microscope and those determined with the qPCR assay was obtained. Receiver operating characteristic curve analysis was used to evaluate the reliability of the two methods of conidia quantification (microscope examination and qPCR assay) to predict the risk of disease being below or above a damage threshold (D(th)). In total, 142 field samples from commercial onion fields were analyzed. At damage thresholds of 5 or 10 lesions/leaf, conidia quantification with the qPCR assay was more reliable at predicting disease risk than conidia quantification based on microscope counts. The proportion of decisions where the disease was present and predicted was higher for the qPCR assay than for the microscope counts, with values of 0.95 and 0.89 compared with 0.79 and 0.81 for D(th) of 5 and 10 lesions/leaf, respectively. The proportion of decisions where the disease was present but not predicted was lower for the qPCR assay than for microscope counts, with values of 0.05 and 0.11 compared with 0.20 and 0.19 for D(th) of 5 and 10 lesions/leaf, respectively. The results demonstrated that this new qPCR assay was reliable for quantifying B. squamosa airborne inoculum in commercial onion fields and that molecular conidia quantification could be used as a component of a risk management system for Botrytis leaf blight.
Asunto(s)
Microbiología del Aire , Botrytis/fisiología , ADN de Hongos/aislamiento & purificación , Cebollas/microbiología , Esporas Fúngicas/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa , Esporas Fúngicas/genéticaRESUMEN
ABSTRACT Sudden oak death, caused by Phytophthora ramorum, is a severe disease that affects many species of trees and shrubs. This pathogen is spreading rapidly and quarantine measures are currently in place to prevent dissemination to areas that were previously free of the pathogen. Molecular assays that rapidly detect and identify P. ramorum frequently fail to reliably distinguish between P. ramorum and closely related species. To overcome this problem and to provide additional assays to increase confidence, internal transcribed spacer (ITS), beta-tubulin, and elicitin gene regions were sequenced and searched for polymorphisms in a collection of Phytophthora spp. Three different reporter technologies were compared: molecular beacons, TaqMan, and SYBR Green. The assays differentiated P. ramorum from the 65 species of Phytophthora tested. The assays developed were also used with DNA extracts from 48 infected and uninfected plant samples. All environmental samples from which P. ramorum was isolated by PARP-V8 were detected using all three real-time PCR assays. However, 24% of the samples yielded positive real-time PCR assays but no P. ramorum cultures, but sequence analysis of the coxI and II spacer region confirmed the presence of the pathogen in most samples. The assays based on detection of the ITS and elicitin regions using TaqMan tended to have lower cycle threshold values than those using beta-tubulin and seemed to be more sensitive.
RESUMEN
ABSTRACT Traditional methods of quantifying Pythium spp. rely on the use of selective media and dilution plating. However, high variability is inherent in this type of enumeration and counts may not be representative of the pathogenic population of Pythium spp. Variable regions of the internal transcribed spacer of the rDNA were used to design species-specific primers for detection and quantification of nine Pythium spp. from soils in eastern Washington. Primer pairs were designed for Pythium abappressorium, P. attrantheridium, P. heterothallicum, P. irregulare group I, P. irregulare group IV, P. paroecandrum, P. rostratifingens, P. sylvaticum, and P. ultimum and used with real-time polymerase chain reaction. Standard curves were generated for each of the species using SYBR Green I fluorescent dye for detection of amplification. Seventy-seven isolates of Pythium were screened to confirm specificity of each primer set. DNA was extracted from soil and standard curves were generated for P. irregulare group I, P. irregulare group IV, and P. ultimum to correlate populations of each species in the soil with quantities of DNA amplified from the same soil. Examination of raw field soils revealed results similar to those observed in previous studies. This new technique for the quantification of Pythium spp. is rapid and accurate, and will be a useful tool in the future study of these pathogenic Pythium spp.
RESUMEN
We previously reported that platelets from advanced sporadic Alzheimer's disease (AD) patients exhibit two defects: first, an aberrant signal transduction presenting as a thrombin-induced hyperacidification, which is more severe for donors with the apolipoprotein E4 allele (apoE4), and second, an AD-specific Amyloid Precursor Protein (APP) processing defect that presents as retention of APP on the activated platelets' surface and in independent of the apo E allele. This retention of membrane APP correlates with decreased release of soluble APP. To determine at what stage in the disease progression these defects appear, we performed signal transduction and secretion studies on moderate AD patients. Thrombin-activated platelets from these patients do not exhibit either hyperacidification or APP retention; their APP processing and secretion are normal by Western blotting, suggesting that the two platelet defects appear in the advanced stages of AD.
Asunto(s)
Enfermedad de Alzheimer/sangre , Activación Plaquetaria/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Precursor de Proteína beta-Amiloide/sangre , Plaquetas/metabolismo , Western Blotting , Calcio/metabolismo , Degranulación de la Célula/fisiología , Citosol/metabolismo , Progresión de la Enfermedad , Citometría de Flujo , Humanos , Concentración de Iones de Hidrógeno , Indicadores y Reactivos , Potenciales de la Membrana/fisiología , Persona de Mediana Edad , Neutrófilos/metabolismo , Selectina-P/metabolismo , Trombina/metabolismoRESUMEN
Upon activation, platelet alpha-granules' soluble contents are secreted and membrane-bound contents are translocated to the plasma membrane. Membrane-bound proteins include the beta-amyloid precursor protein (APP) from which the beta-amyloid (A beta) deposits found surrounding the cerebrovasculature of patients with Alzheimer's Disease (AD) may originate. We show here that activated platelets from AD patients exhibit less APP processing, retain more of the protein on their surface, and secrete less as soluble fragments than do controls. Surface labeling demonstrated that there is little APP or CD62 on the surface of resting platelets. Upon activation, control platelets exhibited more of both proteins on their surface, while advanced AD patients exhibited similar amounts of CD62 as controls, but retained significantly more surface APP. AD platelets secreted similar amounts of most soluble alpha-granule contents as controls, but less APP fragments. Together these results suggest a processing defect that may account for greater deposition of A beta-containing products in the vasculature to which activated platelets adhere.
Asunto(s)
Enfermedad de Alzheimer/sangre , Péptidos beta-Amiloides/sangre , Plaquetas/metabolismo , Adulto , Anciano , Precursor de Proteína beta-Amiloide/sangre , Western Blotting , Degranulación de la Célula , Membrana Celular/metabolismo , Demencia/sangre , Electroforesis en Gel de Poliacrilamida , Femenino , Humanos , Masculino , Activación Plaquetaria/fisiologíaRESUMEN
We report the binding properties and subnuclear localization of [3H]hemicholinium-3 binding sites in human amygdala using quantitative autoradiography. Specific binding was saturable and high affinity (apparent Kd 2-11 nM). Binding was highest in the basolateral nucleus which receives dense cholinergic innervation from the basal forebrain. Binding closely approximated acetylcholinesterase reactivity. These data support [3H]hemicholinium-3 as a quantitative marker for cholinergic terminals in human brain.
Asunto(s)
Amígdala del Cerebelo/metabolismo , Proteínas Portadoras , Hemicolinio 3/metabolismo , Receptores de Superficie Celular/análisis , Receptores Colinérgicos/análisis , Anciano , Anciano de 80 o más Años , Autorradiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ensayo de Unión RadioliganteRESUMEN
ABSTRACT An assay was developed that can identify unknown isolates of Pythium or Phytophthora species in a single hybridization. This reverse dot blot system is based on arrays of species-specific amplified fragments or oligonucleotides derived from the internal transcribed spacer (ITS) region, which are blotted as dots on a nylon membrane. By using total DNA from a sample as the template, universal primers, and digoxigenin-dUTP, the ITS was amplified and labeled simultaneously by the polymerase chain reaction (PCR). A small aliquot of the resultant labeled and amplified product was used as a probe for hybridization to a dot blot membrane that contained the immobilized species-specific oligonucleotides or amplified PCR fragments. The reverse dot blot system based on arrays of oligonucleotides showed far fewer cross-hybridizations than one based on entire amplified ITS I fragments. Unknown species can be identified simply by visualizing the positive hybridization reaction between the DNA labeled directly from the sample and the immobilized specific oligonucleotide. Currently, the assay can be used to identify Pythium aphanidermatum, P. ultimum, P. acanthicum, and Phytophthora cinnamomi. An oligonucleotide that was originally designed to identify Phytophthora hybridized to 10 of the 14 Phytophthora species tested. Another oligonucleotide designed to identify oomycetes hybridized to the 68 species tested, which represented two of the four orders of this phylum.
RESUMEN
Three new species of Pythium, namely, P. oopapillum, P. emineosum and P. camurandrum are presented in this paper based on morphological descriptions and molecular phylogenetic characterisation. These new species were isolated from various ecological regions in Canada. They have unique morphological features in the genus Pythium, and form distinct clades in maximum parsimony analyses, which are also supported by maximum likelihood phylogeny using general time reversible model (GTR), and Bayesian inference (BI) phylogeny using Markov Chain Monte Carlo (MCMC) analysis methods. A comparative study of the new species with closely related taxa, their clade positions, and morphological features are described in this paper.
RESUMEN
We developed a COX1 barcode oligonucleotide array based on 358 sequences, including 58 known and two new species of Penicillium subgenus Penicillium, and 12 allied species. The array was robotically spotted at near microarray density on membranes. Species and clade-specific oligonucleotides were selected using the computer programs SigOli and Array Designer. Robotic spotting allowed 768 spots with duplicate sets of perfect match and the corresponding mismatch and positive control oligonucleotides, to be printed on 2 × 6 cm(2) nylon membranes. The array was validated with hybridizations between the array and digoxigenin (DIG)-labelled COX1 polymerase chain reaction amplicons from 70 pure DNA samples, and directly from environmental samples (cheese and plants) without culturing. DNA hybridization conditions were optimized, but undesired cross-reactions were detected frequently, reflecting the relatively high sequence similarity of the COX1 gene among Penicillium species. Approximately 60% of the perfect match oligonucleotides were rejected because of low specificity and 76 delivered useful group-specific or species-specific reactions and could be used for detecting certain species of Penicillium in environmental samples. In practice, the presence of weak signals on arrays exposed to amplicons from environmental samples, which could have represented weak detections or weak cross reactions, made interpretation difficult for over half of the oligonucleotides. DNA regions with very few single nucleotide polymorphisms or lacking insertions/deletions among closely related species are not ideal for oligonucleotide-based diagnostics, and supplementing the COX1-based array with oligonucleotides derived from additional genes would result in a more robust hierarchical identification system.
RESUMEN
Efficient design of barcode oligonucleotides can lead to significant cost reductions in the manufacturing of DNA arrays. Previous methods are based on either a preliminary alignment, which reduces their efficiency for intron-rich regions, or on a brute force approach, not feasible for large-scale problems or on data structures with very poor performance in the worst case. One of the algorithms we propose uses 'oligonucleotide sorting' for the discovery of oligonucleotide barcodes of given sizes, with good asymptotic performance. Specific barcode oligonucleotides with at least one base difference from other sequences in a database are found for each individual sequence. With another algorithm, specific oligonucleotides can also be found for groups or clades in the database, which have 100% homology for all oligonucleotide sequences within the group or clade while having differences with the rest of the data. By re-organizing the sequences/groups in the database, oligonucleotides for different hierarchical levels can be found. The oligonucleotides or polymorphism locations identified as species or clade specific by the new algorithm are refined and screened further for hybridization thermodynamic properties with third party software.
RESUMEN
A DNA array containing 172 oligonucleotides complementary to specific diagnostic regions of internal transcribed spacers (ITS) of more than 100 species was developed for identification and detection of Pythium species. All of the species studied, with the exception of Pythium ostracodes, exhibited a positive hybridization reaction with at least one corresponding species-specific oligonucleotide. Hybridization patterns were distinct for each species. The array hybridization patterns included cluster-specific oligonucleotides that facilitated the recognition of species, including new ones, belonging to groups such as those producing filamentous or globose sporangia. BLAST analyses against 500 publicly available Pythium sequences in GenBank confirmed that species-specific oligonucleotides were unique to all of the available strains of each species, of which there were numerous economically important ones. GenBank entries of newly described species that are not putative synonyms showed no homology to sequences of the spotted species-specific oligonucleotides, but most new species did match some of the cluster-specific oligonucleotides. Further verification of the specificity of the DNA array was done with 50 additional Pythium isolates obtained by soil dilution plating. The hybridization patterns obtained were consistent with the identification of these isolates based on morphology and ITS sequence analyses. In another blind test, total DNA of the same soil samples was amplified and hybridized on the array, and the results were compared to those of 130 Pythium isolates obtained by soil dilution plating and root baiting. The 13 species detected by the DNA array corresponded to the isolates obtained by a combination of soil dilution plating and baiting, except for one new species that was not represented on the array. We conclude that the reported DNA array is a reliable tool for identification and detection of the majority of Pythium species in environmental samples. Simultaneous detection and identification of multiple species of soilborne pathogens such as Pythium species could be a major step forward for epidemiological and ecological studies.
Asunto(s)
Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Pythium/clasificación , Pythium/aislamiento & purificación , Microbiología del Suelo , Oligonucleótidos/genética , Reacción en Cadena de la Polimerasa/métodos , Pythium/genética , Especificidad de la EspecieRESUMEN
After the process of DNA barcoding has become well advanced in a group of organisms, as it has in the economically important fungi, the question then arises as to whether shorter and literally more barcode-like DNA segments should be utilized to facilitate rapid identification and, where applicable, detection. Through appropriate software analysis of typical full-length barcodes (generally over 500 base pairs long), uniquely distinctive oligonucleotide 'microcodes' of less than 25 bp can be found that allow rapid identification of circa 100-200 species on various array-like platforms. Microarrays can in principle fulfill the function of microcode-based species identification but, because of their high cost and low level of reusability, they tend to be less cost-effective. Two alternative platforms in current use in fungal identification are reusable nylon-based macroarrays and the Luminex system of specific, colour-coded DNA detection beads analysed by means of a flow cytometer. When the most efficient means of rapid barcode-based species identification is sought, a choice can be made either for one of these methodologies or for basic high-throughput sequencing, depending on the strategic outlook of the investigator and on current costs. Arrays and functionally similar platforms may have a particular advantage when a biologically complex material such as soil or a human respiratory secretion sample is analysed to give a census of relevant species present.
Asunto(s)
Biodiversidad , ADN/genética , Procesamiento Automatizado de Datos/métodos , Hongos/genética , Técnicas de Diagnóstico Molecular/métodos , Citometría de Flujo , Análisis por Micromatrices/métodos , Oligonucleótidos/genética , Especificidad de la EspecieRESUMEN
Sequences of 16S rDNAs and the intergenic spacer (IGS) regions between the 16S and 23S rDNA of bacterial strains from genus Erwinia were determined. Comparison of 16S rDNA sequences from different species and subspecies clearly revealed intraspecies-subspecies homology and interspecies heterogeneity. Phylogenetic analyses of 16S rDNA sequence data revealed that Erwinia spp. formed a discrete monophyletic clade with moderate to high bootstrap values. PCR amplification of the 16S-23S rDNA regions using primers complementary to the 3' end of 16S and 5' end of 23S rRNA genes generated two DNA fragments. The small 16S-23S rDNA IGS regions of Erwinia spp. examined in this study varied considerably in size and nucleotide sequence. Multiple sequence alignment and phylogenetic analysis of small IGS sequence data showed a consistent relationship among the test strains that was roughly in agreement with the 16S rDNA data that reflected the accepted species and subspecies structure of the taxon. Sequence data derived from the large IGS resolved the strains into coherent groups; however, the sequence information would not allow any phylogenetic conclusion, because it failed to reflect the accepted species structure of the test strains.
Asunto(s)
ADN Intergénico/genética , Erwinia/clasificación , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Secuencia de Bases , ADN Intergénico/análisis , ADN Ribosómico/análisis , ADN Ribosómico/genética , Erwinia/genética , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADNRESUMEN
To investigate the role of jasmonate in the defense of plants against fungal pathogens, we have studied a mutant of Arabidopsis, fad3-2 fad7-2 fad8, that cannot accumulate jasmonate. Mutant plants were extremely susceptible to root rot caused by the fungal root pathogen Pythium mastophorum (Drechs.), even though neighboring wild-type plants were largely unaffected by this fungus. Application of exogenous methyl jasmonate substantially protected mutant plants, reducing the incidence of disease to a level close to that of wild-type controls. A similar treatment with methyl jasmonate did not protect the jasmonate-insensitive mutant coi1 from infection, showing that protective action of applied jasmonate against P. mastophorum was mediated by the induction of plant defense mechanisms rather than by a direct antifungal action. Transcripts of three jasmonate-responsive defense genes are induced by Pythium challenge in the wild-type but not in the jasmonate-deficient mutant. Pythium species are ubiquitous in soil and root habitats world-wide, but most (including P. mastophorum) are considered to be minor pathogens. Our results indicate that jasmonate is essential for plant defense against Pythium and, because of the high exposure of plant roots to Pythium inoculum in soil, may well be fundamental to survival of plants in nature. Our results further indicate that the fad3-2 fad7-2 fad8 mutant is an appropriate genetic model for studying the role of this important signaling molecule in pathogen defense.
RESUMEN
Alzheimer's Disease(AD), characterized by a deposition of beta-amyloid peptide (beta/A4) in the brain and in the cerebral microvasculature of affected individuals, is derived from its precursor protein (beta APP) via proteolytic processing by enzyme(s) which have not yet been characterized or localized. Since platelets carry APP in one of their granules, they have been implicated as a source of the beta/A4 deposits in the microvasculature of AD patients, attributable to either an abnormality in the platelets' stimulus response, in the quantity or nature of the APP they release upon activation and/or in the processing of that protein. We show here that platelets from patients with severe AD have abnormal stimulus responses to alpha-thrombin. Specifically, these cells hyperacidify. While it is not clear why this abnormality occurs, it may contribute to aberrant granule secretion since we have demonstrated earlier that release of platelet granule contents is partially controlled by the cytoplasmic pH.