Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38396698

RESUMEN

Cells and extracts derived from adipose tissue are gaining increasing attention not only in plastic surgery and for aesthetic purposes but also in regenerative medicine. The ability of hyaluronan (HA) to support human adipose stromal cell (hASC) viability and differentiation has been investigated. However, the compatibility of adipose tissue with HA-based formulation in terms of biophysical and rheological properties has not been fully addressed, although it is a key feature for tissue integration and in vivo performance. In this study, the biophysical and biochemical properties of highly concentrated (45 mg/mL) high/low-molecular-weight HA hybrid cooperative complex were assessed with a further focus on the potential application in adipose tissue augmentation/regeneration. Specifically, HA hybrid complex rheological behavior was observed in combination with different adipose tissue ratios, and hyaluronidase-catalyzed degradation was compared to that of a high-molecular-weight HA (HHA). Moreover, the HA hybrid complex's ability to induce in vitro hASCs differentiation towards adipose phenotype was evaluated in comparison to HHA, performing Oil Red O staining and analyzing gene/protein expression of PPAR-γ, adiponectin, and leptin. Both treatments supported hASCs differentiation, with the HA hybrid complex showing better results. These outcomes may open new frontiers in regenerative medicine, supporting the injection of highly concentrated hybrid formulations in fat compartments, eventually enhancing residing staminal cell differentiation and improving cell/growth factor persistence towards tissue regeneration districts.


Asunto(s)
Ácido Hialurónico , Medicina Regenerativa , Humanos , Ácido Hialurónico/química , Tejido Adiposo/metabolismo , Adipocitos , Diferenciación Celular , Células del Estroma , Células Cultivadas
2.
Biomacromolecules ; 24(6): 2522-2531, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37116076

RESUMEN

Sulfated alginates (ASs), as well as several artificially sulfated polysaccharides, show interesting bioactivities. The key factors for structure-activity relationships studies are the degree of sulfation and the distribution of the sulfate groups along the polysaccharide backbone (sulfation pattern). The former parameter can often be controlled through stoichiometry, while the latter requires the development of suitable chemical or enzymatic, regioselective methods and is still missing for ASs. In this work, a study on the regioselective installation of several different protecting groups on a d-mannuronic acid enriched (M-rich) alginate is reported in order to develop a semi-synthetic access to regioselectively sulfated AS derivatives. A detailed structural characterization of the obtained ASs revealed that the regioselective sulfation could be achieved complementarily at the O-2 or O-3 positions of M units through multi-step sequences relying upon a silylating or benzoylating reagent for the regioselective protection of M-rich alginic acid, followed by sulfation and deprotection.


Asunto(s)
Alginatos , Sulfatos , Alginatos/química , Polisacáridos/química , Sulfatos/química
3.
Int J Mol Sci ; 23(3)2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35163608

RESUMEN

Chondroitin obtained through biotechnological processes (BC) shares similarities with both chondroitin sulfate (CS), due to the dimeric repetitive unit, and hyaluronic acid (HA), as it is unsulfated. In the framework of this experimental research, formulations containing BC with an average molecular size of about 35 KDa and high molecular weight HA (HHA) were characterized with respect to their rheological behavior, stability to enzymatic hydrolysis and they were evaluated in different skin damage models. The rheological characterization of the HHA/BC formulation revealed a G' of 92 ± 3 Pa and a G″ of 116 ± 5 Pa and supported an easy injectability even at a concentration of 40 mg/mL. HA/BC preserved the HHA fraction better than HHA alone. BTH was active on BC alone only at high concentration. Assays on scratched keratinocytes (HaCaT) monolayers showed that all the glycosaminoglycan formulations accelerated cell migration, with HA/BC fastening healing 2-fold compared to the control. In addition, in 2D HaCaT cultures, as well as in a 3D skin tissue model HHA/BC efficiently modulated mRNA and protein levels of different types of collagens and elastin remarking a functional tissue physiology. Finally, immortalized human fibroblasts were challenged with TNF-α to obtain an in vitro model of inflammation. Upon HHA/BC addition, secreted IL-6 level was lower and efficient ECM biosynthesis was re-established. Finally, co-cultures of HaCaT and melanocytes were established, showing the ability of HHA/BC to modulate melanin release, suggesting a possible effect of this specific formulation on the reduction of stretch marks. Overall, besides demonstrating the safety of BC, the present study highlights the potential beneficial effect of HHA/BC formulation in different damage dermal models.


Asunto(s)
Condroitín/farmacología , Ácido Hialurónico/farmacología , Piel/efectos de los fármacos , Cicatrización de Heridas , Técnicas de Cocultivo , Colágeno/metabolismo , Fibroblastos , Células HaCaT , Humanos , Queratinocitos
4.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199374

RESUMEN

BACKGROUND: Skinboosters represent the latest category of hyaluronan (HA) hydrogels released for aesthetic purposes. Different from originally developed gels, they are intended for more superficial injections, claiming a skin rejuvenation effect through hydration and possibly prompting biochemical effects in place of the conventional volumetric action. Here, three commercial skinboosters were characterized to unravel the scientific basis for such indication and to compare their performances. METHODS: Gels were evaluated for water-soluble/insoluble-HA composition, rheology, hydration, cohesivity, stability and effect, in vitro, on human dermal fibroblasts towards the production of extracellular matrix components. RESULTS: Marked differences in the insoluble-hydrogel amount and in the hydrodynamic parameters for water-soluble-HA chains were evidenced among the gels. Hydration, rigidity and cohesivity also varied over a wide range. Sensitivity to hyaluronidases and Reactive Oxygen Species was demonstrated allowing a stability ranking. Slight differences were found in gels' ability to prompt elastin expression and in ColIV/ColI ratio. CONCLUSIONS: A wide panel of biophysical and biochemical parameters for skinboosters was provided, supporting clinicians in the conscious tuning of their use. Data revealed great variability in gels' behavior notwithstanding the same clinical indication and unexpected similarities to the volumetric formulations. Data may be useful to improve customization of gel design toward specific uses.


Asunto(s)
Ácido Hialurónico/química , Hialuronoglucosaminidasa/genética , Hidrogeles/química , Piel/efectos de los fármacos , Elastina/química , Fibroblastos/efectos de los fármacos , Humanos , Hialuronoglucosaminidasa/química , Inyecciones , Especies Reactivas de Oxígeno/química , Rejuvenecimiento/fisiología , Reología , Piel/crecimiento & desarrollo , Piel/patología , Envejecimiento de la Piel/genética , Viscosidad
5.
Int J Mol Sci ; 20(19)2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31554177

RESUMEN

The effectiveness of hyaluronic acid (HA), also called as hyaluronan, and its formulations on tissue regeneration and epidermal disease is well-documented. High-molecular-weight hyaluronan (HHA) is an efficient space filler that maintains hydration, serves as a substrate for proteoglycan assembly, and is involved in wound healing. Recently, an innovative hybrid cooperative complex (HCC) of high- and low-molecular-weight hyaluronan was developed that is effective in wound healing and bioremodeling. The HCC proposed here consisted of a new formulation and contained 1.6 ± 0.1 kDa HHA and 250 ± 7 kDa LHA (low molecular weight hyaluronic acid). We investigated the performance of this HCC in a novel in vitro HaCaT (immortalized human keratinocytes)/HDF (human dermal fibroblast) co-culture model to assess its ability to repair skin tissue lesions. Compared to linear HA samples, HCC reduced the biomarkers of inflammation (Transforming Growth Factor-ß (TGF-ß), Tumor Necrosis Factor receptor-α (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8)), and accelerated the healing process. These data were confirmed by the modulation of metalloproteases (MMPs) and elastin, and were compatible with a prospectively reduced risk of scar formation. We also examined the expression of defensin-2, an antimicrobial peptide, in the presence of hyaluronan, showing a higher expression in the HCC-treated samples and suggesting a potential increase in antibacterial and immunomodulatory functions. Based on these in vitro data, the presence of HCC in creams or dressings would be expected to enhance the resolution of inflammation and accelerate the skin wound healing process.


Asunto(s)
Materiales Biocompatibles/química , Ácido Hialurónico/química , Sustancias Macromoleculares/química , Cicatrización de Heridas , Biomarcadores , Línea Celular , Técnicas de Cocultivo , Humanos , Hidrodinámica , Ensayo de Materiales , Reología , Análisis Espectral
6.
Clin Cases Miner Bone Metab ; 13(1): 36-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27252742

RESUMEN

Osteoarthritis (OA) represents a group of chronic, painful, disabling conditions affecting synovial joints. It is characterized by degeneration of articular cartilage, alterations of peri-articular and subchondral bone, low-grade synovial inflammation (synovitis). Despite OA is commonly described as a non-inflammatory disease, it is known that its progression and the subsequent increment of symptoms correlate to the production of inflammatory factors that induce the secretion of enzymes responsible for cartilage degradation. In clinical practice, to alleviate pain and stiffness, not only during acute phases but also as maintenance therapy, intra-articular injections of corticosteroids or similar drugs are used, besides it is well diffused the viscosupplementation procedure based on hyaluronan gel. There are many different products containing high molecular weight linear HA or cross-linked derivatives, however the novelty in the field consist in the hybrid cooperative complexes derived from high and low molecular weight HA through a patented processing. This technique permit to double the amount of HA delivered to the injured site without increasing the injected volume, beside in vitro assay on human chondrocytes suggested hybrid complexes as effective in the modulation of several inflammatory cytokines in joints.

7.
BMC Cell Biol ; 16: 19, 2015 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-26163378

RESUMEN

BACKGROUND: Recent studies have reported the roles of Hyaluronic acid (HA) chains of diverse length in wound repair, especially considering the simultaneous occurrence in vivo of both high- (H-HA) and low-molecular weight (L-HA) hyaluronan at an injury site. It has been shown that HA fragments (5 ≤ MW ≤ 20 kDa) usually trigger an inflammatory response that, on one hand, is the first signal in the activation of a repair mechanism but on the other, when it's overexpressed, it may promote unwanted side effects. The present experimental research has aimed to investigate H-HA, L-HA and of a newly developed complex of the two (H-HA/L-HA) for stability (e.g. hyaluronidases digestion), for their ability to promote wound healing of human keratinocytes in vitro and for their effect on cellular biomarker expression trends. RESULTS: Time-lapse video microscopy studies proved that the diverse HA was capable of restoring the monolayer integrity of HaCat. The H-HA/L-HA complex (0.1 and 1%w/v) proved faster in regeneration also in co-culture scratch test where wound closure was achieved in half the time of H-HA stimulated cells and 2.5-fold faster than the control. Gene expression was evaluated for transformation growth factor beta 1 (TGF-ß1) proving that L-HA alone increased its expression at 4 h followed by restoration of similar trends for all the stimuli. Depending on the diverse stimulation (H-HA, L-HA or the complex), metalloproteinases (MMP-2, -9, -13) were also modulated differently. Furthermore, type I collagen expression and production were evaluated. Compared to the others, persistence of a significant higher expression level at 24 h for the H-HA/L-HA complex was found. CONCLUSIONS: The outcomes of this research showed that, both at high and low concentrations, hybrid complexes proved to perform better than HA alone thus suggesting their potential as medical devices in aesthetic and regenerative medicine.


Asunto(s)
Ácido Hialurónico/farmacología , Cicatrización de Heridas/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Técnicas de Cocultivo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Microscopía por Video , Peso Molecular , Streptococcus/metabolismo , Imagen de Lapso de Tiempo , Transcriptoma/efectos de los fármacos , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Viscosidad
8.
Bioorg Med Chem ; 22(21): 6014-25, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25282648

RESUMEN

Chikungunya virus (CHIKV), a mosquito-borne arthrogenic Alphavirus, causes an acute febrile illness in humans, that is, accompanied by severe joint pains. In many cases, the infection leads to persistent arthralgia, which may last for weeks to several years. The re-emergence of this infection in the early 2000s was exemplified by numerous outbreaks in the eastern hemisphere. Since then, the virus is rapidly spreading. Currently, no drugs have been approved or are in development for the treatment of CHIKV, which makes this viral infection particularly interesting for academic medicinal chemistry efforts. Several molecules have already been identified that inhibit CHIKV replication in phenotypic virus-cell-based assays. One of these is arbidol, a molecule that already has been licensed for the treatment of influenza A and B virus infections. For structural optimization, a dedicated libraries of 43 indole-based derivatives were evaluated leading to more potent analogues (IIIe and IIIf) with anti-chikungunya virus (CHIKV) activities higher than those of the other derivatives, including the lead compound, and with a selective index of inhibition 13.2 and 14.6, respectively, higher than that of ARB (4.6).


Asunto(s)
Antivirales/química , Antivirales/farmacología , Fiebre Chikungunya/tratamiento farmacológico , Virus Chikungunya/efectos de los fármacos , Indoles/química , Indoles/farmacología , Replicación Viral/efectos de los fármacos , Animales , Virus Chikungunya/fisiología , Chlorocebus aethiops , Humanos , Relación Estructura-Actividad , Células Vero
9.
PLoS One ; 19(7): e0298280, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008482

RESUMEN

Collagen-based membranes are class III-medical devices widely used in dental surgical procedures to favour bone regeneration. Here, we aimed to provide biophysical and biochemical data on this type of devices to support their optimal use and design/manufacturing. To the purpose, four commercial, non-crosslinked collagen-based-membranes, obtained from various sources (equine tendon, pericardium or cortical bone tissues, and porcine skin), were characterized in vitro. The main chemical, biophysical and biochemical properties, that have significant clinical implications, were evaluated. Membranes showed similar chemical features. They greatly differed in morphology as well as in porosity and density and showed a diverse ranking in relation to these latter two parameters. Samples highly hydrated in physiological medium (swelling-ratio values in the 2.5-6.0 range) and, for some membranes, an anisotropic expansion during hydration was, for the first time, highlighted. Rheological analyses revealed great differences in deformability (150-1500kPa G') also alerting about the marked variation in membrane mechanical behaviour upon hydration. Samples proved diverse sensitivity to collagenase, with the cortical-derived membrane showing the highest stability. Biological studies, using human-bone-derived cells, supported sample ability to allow cell proliferation and to prompt bone regeneration, while no relevant differences among membranes were recorded. Prediction of relative performance based on the findings was discussed. Overall, results represent a first wide panel of chemical/biophysical/biochemical data on collagen-based-membranes that 1) enhances our knowledge of these products, 2) aids their optimal use by providing clinicians with scientific basis for selecting products based on the specific clinical situation and 3) represents a valuable reference for optimizing their manufacturing.


Asunto(s)
Regeneración Ósea , Colágeno , Membranas Artificiales , Regeneración Ósea/efectos de los fármacos , Colágeno/química , Colágeno/metabolismo , Animales , Humanos , Porcinos , Porosidad , Caballos , Proliferación Celular , Reología
10.
J Cell Physiol ; 228(8): 1762-73, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23359523

RESUMEN

Mesenchymal stem cell (MSC) therapy holds promise for treating diseases and tissue repair. Regeneration of skeletal muscle tissue that is lost during pathological muscle degeneration or after injuries is sustained by the production of new myofibers. Human Adipose stem cells (ASCs) have been reported to regenerate muscle fibers and reconstitute the pericytic cell pool after myogenic differentiation in vitro. Our aim was to evaluate the differentiation potential of constructs made from a new cross-linked hyaluronic acid (XHA) scaffold on which different sorted subpopulations of ASCs were loaded. Thirty days after engraftment in mice, we found that NG2(+) ASCs underwent a complete myogenic differentiation, fabricating a human skeletal muscle tissue, while NG2(-) ASCs merely formed a human adipose tissue. Myogenic differentiation was confirmed by the expression of MyoD, MF20, laminin, and lamin A/C by immunofluorescence and/or RT-PCR. In contrast, adipose differentiation was confirmed by the expression of adiponectin, Glut-4, and PPAR-γ. Both tissues formed expressed Class I HLA, confirming their human origin and excluding any contamination by murine cells. In conclusion, our study provides novel evidence that NG2(+) ASCs loaded on XHA scaffolds are able to fabricate a human skeletal muscle tissue in vivo without the need of a myogenic pre-differentiation step in vitro. We emphasize the translational significance of our findings for human skeletal muscle regeneration.


Asunto(s)
Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Antígenos/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/fisiología , Proteoglicanos/metabolismo , Andamios del Tejido/química , Animales , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Reactivos de Enlaces Cruzados , Humanos , Ácido Hialurónico/análogos & derivados , Ácido Hialurónico/química , Lisina/análogos & derivados , Lisina/química , Células Madre Mesenquimatosas/clasificación , Ratones , Ratones Desnudos , Regeneración/genética , Ingeniería de Tejidos
11.
Int J Biol Macromol ; 236: 123873, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36870627

RESUMEN

Hyaluronan-(HA) short half-life in vivo limits its benefits in tissue repair. Self-esterified-HA is of great interest because it progressively releases HA, promoting tissue-regeneration longer than the unmodified-polymer. Here, the 1-ethyl-3-(3-diethylaminopropyl)carbodiimide(EDC)-hydroxybenzotriazole(HOBt) carboxyl-activating-system was evaluated for self-esterifying HA in the solid state. The aim was to propose an alternative to the time-consuming, conventional reaction of quaternary-ammonium-salts of HA with hydrophobic activating-systems in organic media, and to the EDC-mediated reaction, limited by by-product formation. Additionally, we aimed to obtain derivatives releasing defined molecular-weight(MW)-HA that would be valuable for tissue renewal. A 250 kDa-HA(powder/sponge) was reacted with increasing EDC/HOBt amounts. HA-modification was investigated through Size-Exclusion-Chromatography-Triple-Detector-Array-analyses, FT-IR/1H NMR and the products(XHAs) extensively characterized. Compared to conventional protocols, the set procedure is more efficient, avoids side-reactions, allows for an easier processing to diverse clinically-usable 3D-forms, leads to products gradually releasing HA under physiological conditions with the possibility to tune the MW of the biopolymer-released. Finally, the XHAs exhibit sound stability to Bovine-Testicular-Hyaluronidase, hydration/mechanical properties suitable for wound-dressings, with improvements over available matrices, and prompt in vitro wound-regeneration, comparably to linear-HA. To the best of our knowledge, the procedure is the first valid alternative to conventional protocols for HA self-esterification with advances in the process itself and in product performance.


Asunto(s)
Ácido Hialurónico , Hidrogeles , Animales , Bovinos , Ácido Hialurónico/química , Hidrogeles/química , Espectroscopía Infrarroja por Transformada de Fourier , Cicatrización de Heridas , Biopolímeros
12.
Polymers (Basel) ; 14(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35745978

RESUMEN

BDDE (1,4-butanediol-diglycidylether)-crosslinked hyaluronan (HA) hydrogels are widely used for dermo-aesthetic purposes. The rheology and stability of the gels under physiological conditions greatly affect their clinical indications and outcomes. To date, no studies investigating how these features are related to the chemistry of the polymeric network have been reported. Here, four available HA-BDDE hydrogels were studied to determine how and to what extent their rheology and stability with respect to enzymatic hydrolysis relate to the type and degree of HA structural modification. 1H-/13C-NMR analyses were associated for the quantification of the "true" HA chemical derivatization level, discriminating between HA that was effectively crosslinked by BDDE, and branched HA with BDDE that was anchored on one side. The rheology was measured conventionally and during hydration in a physiological medium. Sensitivity to bovine testicular hyaluronidase was quantified. The correlation between NMR data and gel rheology/stability was evaluated. The study indicated that (1) the gels greatly differed in the amounts of branched, crosslinked, and overall modified HA, with most of the HA being branched; (2) unexpectedly, the conventionally measured rheological properties did not correlate with the chemical data; (3) the gels' ranking in terms of rheology was greatly affected by hydration; (4) the rheology of the hydrated gels was quantitatively correlated with the amount of crosslinked HA, whereas the correlations with the total HA modification level and with the degree of branched HA were less significant; (5) increasing HA derivatization/crosslinking over 9/3 mol% did not enhance the stability with respect to hyaluronidases. These results broaden our knowledge of these gels and provide valuable information for improving their design and characterization.

13.
Polymers (Basel) ; 13(19)2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34641024

RESUMEN

In this research work, viscosupplements based on linear, derivatized, crosslinked and complexed HA forms were extensively examined, providing data on the hydrodynamic parameters for the water-soluble-HA-fraction, rheology, sensitivity to enzymatic hydrolysis and capacity to modulate specific biomarkers' expression in human pathological chondrocytes and synoviocytes. Soluble HA ranged from 0 to 32 mg/mL and from 150 to 1330 kDa MW. The rheological behavior spanned from purely elastic to viscoelastic, suggesting the diversity of the categories that are suitable for restoring specific/different features of the healthy synovial fluid. The rheological parameters were reduced in a diverse manner upon dilution and hyaluronidases action, indicating different durations of the viscosupplementation effect. Bioactivity was found for all the samples, increasing the expression of different matrix markers (e.g., hyaluronan-synthase); however, the hybrid cooperative complexes performed better in most of the experiments. Hybrid cooperative complexes improved COLII mRNA expression (~12-fold increase vs. CTR), proved the most effective at preserving cell phenotype. In addition, in these models, the HA samples reduced inflammation. IL-6 was down-regulated vs. CTR by linear and chemically modified HA, and especially by hybrid complexes. The results represent the first comprehensive panel of data directly comparing the diverse HA forms for intra-articular injections and provide valuable information for tailoring products' clinical use as well as for designing new, highly performing HA-formulations that can address specific needs.

14.
Regen Biomater ; 8(3): rbaa052, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34211725

RESUMEN

Gelatin hydrogels by microbial-transglutaminase crosslinking are being increasingly exploited for tissue engineering, and proved high potential in bone regeneration. This study aimed to evaluate, for the first time, the combination of enzymatically crosslinked gelatin with hyaluronan and the newly developed biotechnological chondroitin in enhancing osteogenic potential. Gelatin enzymatic crosslinking was carried out in the presence of hyaluronan or of a hyaluronan-chondroitin mixture, obtaining semi-interpenetrating gels. The latter proved lower swelling extent and improved stiffness compared to the gelatin matrix alone, whilst maintaining high stability. The heteropolysaccharides were retained for 30 days in the hydrogels, thus influencing cell response over this period. To evaluate the effect of hydrogel composition on bone regeneration, materials were seeded with human dental pulp stem cells and osteogenic differentiation was assessed. The expression of osteocalcin (OC) and osteopontin (OPN), both at gene and protein level, was evaluated at 7, 15 and 30 days of culture. Scanning electron microscopy (SEM) and two-photon microscope observations were performed to assess bone-like extracellular matrix (ECM) deposition and to observe the cell penetration depth. In the presence of the heteropolysaccharides, OC and OPN expression was upregulated and a higher degree of calcified matrix formation was observed. Combination with hyaluronan and chondroitin improved both the biophysical properties and the biological response of enzymatically crosslinked gelatin, fastening bone deposition.

15.
Anal Biochem ; 404(1): 21-9, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20399193

RESUMEN

Size exclusion chromatography coupled with triple detection (online laser light scattering, refractometry, and viscosimetry) (SEC-TDA) was applied for the study of hyaluronan (HA) fragments produced during hydrolysis catalyzed by bovine testicular hyaluronidase (BTH). The main advantage this approach provides is the complete hydrodynamic characterization without requiring further experiments. HA was hydrolyzed using several BTH amounts and for increasing incubation times. Fragments were characterized in terms of weight and number average molecular weights (M(w) and M(n), respectively), polydispersity index (M(w)/M(n)), hydrodynamic radius (R(h)), and intrinsic viscosity ([eta]). The Mark-Houwink-Sakurada (MHS) curves (log[eta] versus logM(w)) were then derived directly. Fragments covering a whole range of M(w) (10-900kDa) and size (R(h)=4-81nm) and presenting a rather narrow distribution of molar masses (M(w)/M(n)=1.6-1.7) were produced. From the MHS curves, HA conformation resulted in a change from a random coil toward a rigid rod structure while decreasing the M(w). HA enzymatic hydrolysis in the presence of a BTH inhibitor was also monitored, revealing that inhibition profiles are affected by ionic strength. Finally, a comparison of the kinetic data derived from SEC-TDA with the data from rheological measurements suggested different strengths of the two methods in the determination of the depolymerization rate depending on the hydrolysis conditions.


Asunto(s)
Cromatografía en Gel/métodos , Ácido Hialurónico/química , Animales , Bovinos , Inhibidores Enzimáticos/farmacología , Ácido Hialurónico/metabolismo , Hialuronoglucosaminidasa/metabolismo , Hidrólisis , Cinética , Peso Molecular , Refractometría , Dispersión de Radiación , Viscosidad
16.
Artículo en Inglés | MEDLINE | ID: mdl-32095081

RESUMEN

INTRODUCTION: Hyaluronic Acid (HA) fillers are among the most used products in cosmetic medicine. Companies offer different formulations to allow full facial treatment and/or remodeling. Gels are being studied to establish the biophysical properties behind the specific clinical use and a correlation between the gel biophysical properties and their clinical performance. Clinicians' awareness is growing about the potential benefit deriving from such biophysical characterization. AIM: The Aliaxin® line of HA dermal fillers is the object of this study. The study aimed to widen the biophysical characterization of these gels by investigating a variety of properties to better support their optimal use. Further, we aimed to provide some clinical findings to gain a deeper insight into the correlation between filler features and clinical outcome. METHODS: The four gels of the line were investigated, for the first time, for their cohesivity and stability to Reactive Oxygen Species (ROS). Additional secondary rheological parameters; evidence of relative water-uptake ability; and some clinical findings on product safety, palpability and duration of the aesthetic effect are provided. RESULTS AND CONCLUSION: The gels proved highly cohesive and sensitive to ROS action with stability declining with the decrease in the overall gel elasticity. The G* and complex viscosity values at clinically relevant frequencies and gel water-uptake ability are consistent with the relative clinical indication related to gel projection and hydration capacity. Clinical outcomes showed the safety of the products and a perception of palpability well correlating with the cohesive/viscosity properties of the gels. A similar duration of the aesthetic effect (up to 1 year) was observed despite the diverse in vitro gel stability. The results broaden our knowledge of these gels and may contribute to optimize their clinical use towards the improvement of patient safety and satisfaction. Initial clinical observation indicated that gel biophysical properties allow for a reliable prediction of gel palpability, while in vitro data on gel stability cannot be related to the duration of the observed skin improvement. The latter finding further corroborates the idea of a skin restoration process activated by the gels besides the physical volumetric action.

17.
Clin Cosmet Investig Dermatol ; 13: 683-690, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32982362

RESUMEN

PURPOSE: The primary aim of this study was to evaluate the performance of the study product, in terms of volumizing activity as well as the duration of the effect, in women with age-related midfacial volume defects. In addition, the study allowed the evaluation of the tolerability of the product by both volunteers and investigators. PATIENTS AND METHODS: Twenty-two female volunteers, aged 42-60 years, participated in this study, which was performed under dermatological control in a single center. After an initial visit at baseline to verify adherence to the protocol criteria, volunteers received an injection of Aliaxin® SV (IBSA Farmaceutici Italia Srl), followed 3-4 weeks later by a second touch-up treatment to treat eventual asymmetries. Four subsequent visits, the last performed 9 months from the first injection, were performed to evaluate clinically and instrumentally the efficacy of the treatment. RESULTS: Clinical and statistically significant improvement in cheek volume was recorded after the first postinjection visit, and the effect was maintained until the end of the study period. A clinically measurable amelioration of wrinkle severity was also observed. By 3D picture recording and subsequent quantitative analysis, it was possible to determine the efficacy in terms of increased facial volume, which was already appreciable at the first visit, was further increased at the second and third visits and was maintained at the fourth and last visits. The injections were very well tolerated by the volunteers, as determined by their self-evaluation questionnaires. CONCLUSION: The results of the study confirm the esthetic performance of the study product on age-related midfacial volume defects. The very strong high-volumizing activity of the study product was not only properly determined by the investigators but also confirmed by self-evaluation by the volunteers. These effects were obtained with no appreciable undesired effects.

18.
Int J Biol Macromol ; 144: 316-324, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31846658

RESUMEN

A strain of Bacillus subtilis AF 17 with high exopolysaccharide (EPS) production ability was isolated and identified based on morphological and physiological characteristics and phylogenetic analysis of 16S rDNA sequences. EPS was isolated from the strain fermentation broth by alcohol precipitation and gel-filtration chromatography. Its structural characteristics were investigated and elucidated by methylation analysis, gas chromatography mass spectrometry and nuclear magnetic resonance spectroscopy. Based on the obtained data, the EPS was found to be a levan containing a backbone of 6-substituted ß-fructoses, with a low grade of branching at position 1 (linear/branched ratio 20:1). Levan showed a molecular weight of about 20 MDa. The antioxidant activity of this biopolymer was studied and revealed that levan showed an interesting 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging capacity (IC50 levan = 1.42 mg/mL), reducing power, and also a strong total antioxidant activity. Overall, the results suggest that levan is a promising source of natural antioxidants and can be used as additive in food and pharmaceutical preparations.


Asunto(s)
Antioxidantes/química , Bacillus subtilis/química , Fructanos/química , Antioxidantes/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/aislamiento & purificación , Cromatografía en Gel , Fermentación , Fructanos/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Peso Molecular , Filogenia
20.
Int J Biol Macromol ; 144: 94-101, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31794831

RESUMEN

Hyaluronan (HA)-based hydrogels obtained by crosslinking the biopolymer via ether bonds are widely used in clinical practice. There is interest in improving the design of these gels to match specific properties. Here, the possibility to tune HA-hydrogel behavior by adjusting the molecular weight distribution of the biopolymer undergoing crosslinking was investigated. Three HA samples (500, 1100 and 1600 kDa) underwent reaction with 1,4-butandioldiglycidyl-ether(BDDE) under reported conditions and the crosslinked products were characterized for chemical modification extent, swelling, rheological behavior, cohesivity, sensitivity to enzymatic degradation and effect on Human Dermal Fibroblasts (HDF). HA hydrolysis, under the highly alkaline crosslinking conditions, was also studied for the first time. The main achievements are that 1) varying HA chain length affects hydrogel behavior less than expected, due to the de-polymerization occurring alongside crosslinking, that reduces the differences in sample size 2) when differences in chain length persist notwithstanding hydrolysis, lowering HA size is a means to prepare more concentrated formulations, expected to exhibit longer duration and better cohesivity in vivo, while retaining a certain rigidity, preserving biocompatibility and slightly influencing HDF behavior in relation to CollagenI production. The study shed light on aspects concerning BDDE-HA gel manufacturing and contributed to the improvement of their design.


Asunto(s)
Materiales Biocompatibles/química , Biopolímeros/química , Reactivos de Enlaces Cruzados/química , Éter/química , Ácido Hialurónico/química , Hidrogeles/química , Materiales Biocompatibles/farmacología , Fenómenos Biofísicos , Biopolímeros/farmacología , Supervivencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Hialuronoglucosaminidasa/metabolismo , Ensayo de Materiales , Peso Molecular , Polimerizacion , Reología , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA