Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Transl Med ; 22(1): 246, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454482

RESUMEN

BACKGROUND: Thrombo-inflammation and neutrophil extracellular traps (NETs) are exacerbated in severe cases of COVID-19, potentially contributing to disease exacerbation. However, the mechanisms underpinning this dysregulation remain elusive. We hypothesised that lower DNase activity may be associated with higher NETosis and clinical worsening in patients with COVID-19. METHODS: Biological samples were obtained from hospitalized patients (15 severe, 37 critical at sampling) and 93 non-severe ambulatory cases. Our aims were to compare NET biomarkers, functional DNase levels, and explore mechanisms driving any imbalance concerning disease severity. RESULTS: Functional DNase levels were diminished in the most severe patients, paralleling an imbalance between NET markers and DNase activity. DNase1 antigen levels were higher in ambulatory cases but lower in severe patients. DNase1L3 antigen levels remained consistent across subgroups, not rising alongside NET markers. DNASE1 polymorphisms correlated with reduced DNase1 antigen levels. Moreover, a quantitative deficiency in plasmacytoid dendritic cells (pDCs), which primarily express DNase1L3, was observed in critical patients. Analysis of public single-cell RNAseq data revealed reduced DNase1L3 expression in pDCs from severe COVID-19 patient. CONCLUSION: Severe and critical COVID-19 cases exhibited an imbalance between NET and DNase functional activity and quantity. Early identification of NETosis imbalance could guide targeted therapies against thrombo-inflammation in COVID-19-related sepsis, such as DNase administration, to avert clinical deterioration. TRIAL REGISTRATION: COVERAGE trial (NCT04356495) and COLCOV19-BX study (NCT04332016).


Asunto(s)
COVID-19 , Trampas Extracelulares , Enfermedades del Sistema Nervioso , Humanos , Trampas Extracelulares/metabolismo , Neutrófilos/metabolismo , Desoxirribonucleasas/metabolismo , Desoxirribonucleasa I/metabolismo , Inflamación/metabolismo
2.
Clin Sci (Lond) ; 134(10): 1181-1190, 2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32426810

RESUMEN

Autosomal dominant inherited Protein S deficiency (PSD) (MIM 612336) is a rare disorder caused by rare mutations, mainly located in the coding sequence of the structural PROS1 gene, and associated with an increased risk of venous thromboembolism. To identify the molecular defect underlying PSD observed in an extended French pedigree with seven PSD affected members in whom no candidate deleterious PROS1 mutation was detected by Sanger sequencing of PROS1 exons and their flanking intronic regions or via an multiplex ligation-dependent probe amplification (MLPA) approach, a whole genome sequencing strategy was adopted. This led to the identification of a never reported C to T substitution at c.-39 from the natural ATG codon of the PROS1 gene that completely segregates with PSD in the whole family. This substitution ACG→ATG creates a new start codon upstream of the main ATG. We experimentally demonstrated in HeLa cells that the variant generates a novel overlapping upstream open reading frame (uORF) and inhibits the translation of the wild-type PS. This work describes the first example of 5'UTR PROS1 mutation causing PSD through the creation of an uORF, a mutation that is not predicted to be deleterious by standard annotation softwares, and emphasizes the need for better exploration of such type of non-coding variations in clinical genomics.


Asunto(s)
Regiones no Traducidas 5'/genética , Codón Iniciador/genética , Mutación/genética , Biosíntesis de Proteínas , Deficiencia de Proteína S/genética , Proteína S/genética , Secuencia de Bases , Femenino , Células HeLa , Humanos , Masculino , Linaje , Adulto Joven
4.
J Thromb Haemost ; 22(1): 172-187, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37678548

RESUMEN

BACKGROUND: Neutrophils participate in the pathogenesis of thrombosis through the formation of neutrophil extracellular traps (NETs). Thrombosis is the main cause of morbidity and mortality in patients with myeloproliferative neoplasms (MPNs). Recent studies have shown an increase in NET formation (NETosis) both in patients with JAK2V617F neutrophils and in mouse models, and reported the participation of NETosis in the pathophysiology of thrombosis in mice. OBJECTIVES: This study investigated whether JAK2V617F neutrophils are sufficient to promote thrombosis or whether their cooperation with other blood cell types is necessary. METHODS: NETosis was studied in PF4iCre;Jak2V617F/WT mice expressing JAK2V617F in all hematopoietic lineages, as occurs in MPNs, and in MRP8Cre;Jak2V617F/WT mice in which JAK2V617F is expressed only in leukocytes. RESULTS: In PF4iCre;Jak2V617F/WT mice, an increase in NETosis and spontaneous lung thrombosis abrogated by DNAse administration were observed. The absence of spontaneous NETosis or lung thrombosis in MRP8Cre;Jak2V617F/WT mice suggested that mutated neutrophils alone are not sufficient to induce thrombosis. Ex vivo experiments demonstrated that JAK2V617F-mutated platelets trigger NETosis by JAK2V617F-mutated neutrophils. Aspirin treatment in PF4iCre;Jak2V617F/WT mice reduced NETosis and reduced lung thrombosis. In cytoreductive-therapy-free patients with MPN treated with aspirin, plasma NET marker concentrations were lower than that in patients with MPN not treated with aspirin. CONCLUSION: Our study demonstrates that JAK2V617F neutrophils alone are not sufficient to promote thrombosis; rather, platelets cooperate with neutrophils to promote NETosis in vivo. A new role for aspirin in thrombosis prevention in MPNs was also identified.


Asunto(s)
Trampas Extracelulares , Trastornos Mieloproliferativos , Neoplasias , Trombosis , Trombosis de la Vena , Humanos , Ratones , Animales , Neutrófilos/metabolismo , Trampas Extracelulares/metabolismo , Neoplasias/metabolismo , Trastornos Mieloproliferativos/genética , Janus Quinasa 2/genética , Trombosis de la Vena/metabolismo , Aspirina
5.
Blood Adv ; 8(12): 3330-3343, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38386979

RESUMEN

ABSTRACT: Cerebral venous sinus thrombosis (CVST) is an uncommon venous thromboembolic event accounting for <1% of strokes resulting in brain parenchymal injuries. JAK2V617F mutation, the most frequent driving mutation of myeloproliferative neoplasms, has been reported to be associated with worse clinical outcomes in patients with CVST. We investigated whether hematopoietic JAK2V617F expression predisposes to specific pathophysiological processes and/or worse prognosis after CVST. Using an in vivo mouse model of CVST, we analyzed clinical, biological, and imaging outcomes in mice with hematopoietic-restricted Jak2V617F expression, compared with wild-type Jak2 mice. In parallel, we studied a human cohort of JAK2V617F-positive or -negative CVST. Early after CVST, mice with hematopoietic Jak2V617F expression had increased adhesion of platelets and neutrophils in cerebral veins located in the vicinity of CVST. On day 1, Jak2V617F mice had a worse outcome characterized by significantly more frequent and severe intracranial hemorrhages (ICHs) and higher mortality rates. Peripheral neutrophil activation was enhanced, as indicated by higher circulating platelet-neutrophil aggregates, upregulated CD11b expression, and higher myeloperoxydase plasma level. Concurrently, immunohistological and brain homogenate analysis showed higher neutrophil infiltration and increased blood-brain barrier disruption. Similarly, patients with JAK2V617F-positive CVST tended to present higher thrombotic burden and had significantly higher systemic immune-inflammation index, a systemic thromboinflammatory marker, than patients who were JAK2V617F-negative. In mice with CVST, our study corroborates that Jak2V617F mutation leads to a specific pattern including increased thrombotic burden, ICH, and mortality. The exacerbated thromboinflammatory response, observed both in mice and patients positive for JAK2V617F, could contribute to hemorrhagic complications.


Asunto(s)
Inflamación , Janus Quinasa 2 , Mutación , Trombosis de los Senos Intracraneales , Animales , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Ratones , Trombosis de los Senos Intracraneales/genética , Humanos , Pronóstico , Inflamación/genética , Modelos Animales de Enfermedad , Masculino , Femenino , Neutrófilos/metabolismo
6.
NAR Genom Bioinform ; 5(2): lqad062, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37388819

RESUMEN

Over the last years, there has been a considerable expansion of genome-wide association studies (GWAS) for discovering biological pathways underlying pathological conditions or disease biomarkers. These GWAS are often limited to binary or quantitative traits analyzed through linear or logistic models, respectively. In some situations, the distribution of the outcome may require more complex modeling, such as when the outcome exhibits a semicontinuous distribution characterized by an excess of zero values followed by a non-negative and right-skewed distribution. We here investigate three different modeling for semicontinuous data: Tobit, Negative Binomial and Compound Poisson-Gamma. Using both simulated data and a real GWAS on Neutrophil Extracellular Traps (NETs), an emerging biomarker in immuno-thrombosis, we demonstrate that Compound Poisson-Gamma was the most robust model with respect to low allele frequencies and outliers. This model further identified the MIR155HG locus as significantly (P = 1.4 × 10-8) associated with NETs plasma levels in a sample of 657 participants, a locus recently highlighted to be involved in NETs formation in mice. This work highlights the importance of the modeling strategy for GWAS of a semicontinuous outcome and suggests Compound Poisson-Gamma as an elegant but neglected alternative to Negative Binomial for modeling semicontinuous outcome in the context of genomic investigations.

7.
Front Immunol ; 13: 851497, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371025

RESUMEN

Introduction: Coronavirus disease 2019 (COVID-19) can cause life-threatening acute respiratory distress syndrome (ARDS). Recent data suggest a role for neutrophil extracellular traps (NETs) in COVID-19-related lung damage partly due to microthrombus formation. Besides, pulmonary embolism (PE) is frequent in severe COVID-19 patients, suggesting that immunothrombosis could also be responsible for increased PE occurrence in these patients. Here, we evaluate whether plasma levels of NET markers measured shorty after admission of hospitalized COVID-19 patients are associated with clinical outcomes in terms of clinical worsening, survival, and PE occurrence. Patients and Methods: Ninety-six hospitalized COVID-19 patients were included, 50 with ARDS (severe disease) and 46 with moderate disease. We collected plasma early after admission and measured 3 NET markers: total DNA, myeloperoxidase (MPO)-DNA complexes, and citrullinated histone H3. Comparisons between survivors and non-survivors and patients developing PE and those not developing PE were assessed by Mann-Whitney test. Results: Analysis in the whole population of hospitalized COVID-19 patients revealed increased circulating biomarkers of NETs in patients who will die from COVID-19 and in patients who will subsequently develop PE. Restriction of our analysis in the most severe patients, i.e., the ones who enter the hospital for COVID-19-related ARDS, confirmed the link between NET biomarker levels and survival but not PE occurrence. Conclusion: Our results strongly reinforce the hypothesis that NETosis is an attractive therapeutic target to prevent COVID-19 progression but that it does not seem to be linked to PE occurrence in patients hospitalized with COVID-19.


Asunto(s)
COVID-19 , Trampas Extracelulares , Embolia Pulmonar , Síndrome de Dificultad Respiratoria , Biomarcadores , COVID-19/complicaciones , Humanos , Embolia Pulmonar/etiología , Síndrome de Dificultad Respiratoria/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA