Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Cell Sci ; 135(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36185004

RESUMEN

Num1 is a multifunctional protein that both tethers mitochondria to the plasma membrane and anchors dynein to the cell cortex during nuclear inheritance. Previous work has examined the impact loss of Num1-based mitochondrial tethering has on dynein function in Saccharomyces cerevisiae; here, we elucidate its impact on mitochondrial function. We find that like mitochondria, Num1 is regulated by changes in metabolic state, with the protein levels and cortical distribution of Num1 differing between fermentative and respiratory growth conditions. In cells lacking Num1, we observe a reproducible respiratory growth defect, suggesting a role for Num1 in not only maintaining mitochondrial morphology, but also function. A structure-function approach revealed that, unexpectedly, Num1-mediated cortical dynein anchoring is important for normal growth under respiratory conditions. The severe respiratory growth defect in Δnum1 cells is not specifically due to the canonical functions of dynein in nuclear migration but is dependent on the presence of dynein, as deletion of DYN1 in Δnum1 cells partially rescues respiratory growth. We hypothesize that misregulated dynein present in cells that lack Num1 negatively impacts mitochondrial function resulting in defects in respiratory growth.


Asunto(s)
Dineínas , Proteínas de Saccharomyces cerevisiae , Dineínas/genética , Dineínas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mitocondrias/metabolismo , Microtúbulos/metabolismo
2.
Hum Mol Genet ; 27(21): 3710-3719, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30085106

RESUMEN

Mitochondrial dynamics, including mitochondrial division, fusion and transport, are integral parts of mitochondrial and cellular function. DNM1L encodes dynamin-related protein 1 (Drp1), a member of the dynamin-related protein family that is required for mitochondrial division. Several de novo mutations in DNM1L are associated with a range of disease states. Here we report the identification of five patients with pathogenic or likely pathogenic variants of DNM1L, including two novel variants. Interestingly, all of the positions identified in these Drp1 variants are fully conserved among all members of the dynamin-related protein family that are involved in membrane division and organelle division events. This work builds upon and expands the clinical spectrum associated with Drp1 variants in patients and their impact on mitochondrial division in model cells.


Asunto(s)
GTP Fosfohidrolasas/genética , Proteínas Asociadas a Microtúbulos/genética , Enfermedades Mitocondriales/enzimología , Dinámicas Mitocondriales , Proteínas Mitocondriales/genética , Mutación , Línea Celular , Niño , Análisis Mutacional de ADN , Dinaminas , Femenino , GTP Fosfohidrolasas/fisiología , Humanos , Lactante , Masculino , Proteínas Asociadas a Microtúbulos/fisiología , Enfermedades Mitocondriales/fisiopatología , Proteínas Mitocondriales/fisiología
3.
Biochem Biophys Res Commun ; 500(1): 2-8, 2018 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-28676393

RESUMEN

The shape and position of mitochondria are intimately connected to both mitochondrial and cellular function. Mitochondrial anchors play a central role in mitochondrial positioning by exerting spatial, temporal, and contextual control over the cellular position of the organelle. Investigations into the molecular mechanisms of mitochondrial anchoring are still in the early stages, and we are beginning to appreciate the number and variety of anchors that exist. From the insight gained thus far, it is clear that mitochondrial anchoring has functional and physiological consequences that extend beyond mitochondrial positioning to other critical cellular processes.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Senescencia Celular/genética , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/ultraestructura , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestructura , Embrión no Mamífero , Expresión Génica , Humanos , Mitocondrias/ultraestructura , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/química , Proteínas Mitocondriales/ultraestructura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Células Madre/metabolismo , Células Madre/ultraestructura , Toxoplasma/metabolismo , Toxoplasma/ultraestructura
4.
Proc Natl Acad Sci U S A ; 110(6): E458-67, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23341591

RESUMEN

To elucidate the functional roles of mitochondrial dynamics in vivo, we identified genes that become essential in cells lacking the dynamin-related proteins Fzo1 and Dnm1, which are required for mitochondrial fusion and division, respectively. The screen identified Num1, a cortical protein implicated in mitochondrial division and distribution that also functions in nuclear migration. Our data indicate that Num1, together with Mdm36, forms a physical tether that robustly anchors mitochondria to the cell cortex but plays no direct role in mitochondrial division. Our analysis indicates that Num1-dependent anchoring is essential for distribution of the static mitochondrial network in fzo1 dnm1 cells. Consistently, expression of a synthetic mitochondria-cortex tether rescues the viability of fzo1 dnm1 num1 cells. We find that the cortical endoplasmic reticulum (ER) also is a constituent of the Num1 mitochondria-cortex tether, suggesting an active role for the ER in mitochondrial positioning in cells. Thus, taken together, our findings identify Num1 as a key component of a mitochondria-ER-cortex anchor, which we termed "MECA," that functions in parallel with mitochondrial dynamics to distribute and position the essential mitochondrial network.


Asunto(s)
Retículo Endoplásmico/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Genes Fúngicos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Mutación , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
BMC Biol ; 12: 35, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24884775

RESUMEN

In a majority of cell types, mitochondria form highly dynamic, tubular networks. Maintaining the shape of this complex network is critical for both mitochondrial and cellular function and involves the activities of mitochondrial division, fusion, motility, and tethering. Recent studies have advanced our understanding of the molecular mechanisms underlying these conserved activities and their integration with cellular needs.


Asunto(s)
Mitocondrias/metabolismo , Dinámicas Mitocondriales , Animales , Humanos , Modelos Biológicos , Movimiento , Neuronas/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
J Cell Biol ; 223(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38781029

RESUMEN

The mitochondria-ER-cortex anchor (MECA) forms a tripartite membrane contact site between mitochondria, the endoplasmic reticulum (ER), and the plasma membrane (PM). The core component of MECA, Num1, interacts with the PM and mitochondria via two distinct lipid-binding domains; however, the molecular mechanism by which Num1 interacts with the ER is unclear. Here, we demonstrate that Num1 contains a FFAT motif in its C-terminus that interacts with the integral ER membrane protein Scs2. While dispensable for Num1's functions in mitochondrial tethering and dynein anchoring, the FFAT motif is required for Num1's role in promoting mitochondrial division. Unexpectedly, we also reveal a novel function of MECA in regulating the distribution of phosphatidylinositol-4-phosphate (PI(4)P). Breaking Num1 association with any of the three membranes it tethers results in an accumulation of PI(4)P on the PM, likely via disrupting Sac1-mediated PI(4)P turnover. This work establishes MECA as an important regulatory hub that spatially organizes mitochondria, ER, and PM to coordinate crucial cellular functions.


Asunto(s)
Retículo Endoplásmico , Mitocondrias , Fosfatos de Fosfatidilinositol , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Membrana Celular/metabolismo , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Dinámicas Mitocondriales , Fosfatos de Fosfatidilinositol/metabolismo , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
Mol Biol Cell ; 34(11): ar108, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37585290

RESUMEN

Mitochondrial division is critical for maintenance of mitochondrial morphology and cellular homeostasis. Previous studies have suggested that the mitochondria-ER-cortex anchor (MECA), a tripartite membrane contact site between mitochondria, the ER, and the plasma membrane, is involved in mitochondrial division. However, its role is poorly understood. We developed a system to control MECA formation and depletion, which allowed us to investigate the relationship between MECA-mediated contact sites and mitochondrial division. Num1 is the protein that mediates mitochondria-ER-plasma membrane tethering at MECA sites. Using both rapamycin-inducible dimerization and auxin-inducible degradation components coupled with Num1, we developed systems to temporally control the formation and depletion of the native contact site. Additionally, we designed a regulatable Num1-independant mitochondria-PM tether. We found that mitochondria-PM tethering alone is not sufficient to rescue mitochondrial division and that a specific feature of Num1-mediated tethering is required. This study demonstrates the utility of systems that regulate contact-site formation and depletion in studying the biological functions of membrane contact sites.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Membrana Celular/metabolismo , Proteínas Mitocondriales/metabolismo
8.
Mol Biol Cell ; 33(2): ar20, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34985939

RESUMEN

Positioning organelles at the right place and time is critical for their function and inheritance. In budding yeast, mitochondrial and nuclear positioning require the anchoring of mitochondria and dynein to the cell cortex by clusters of Num1. We have previously shown that mitochondria drive the assembly of cortical Num1 clusters, which then serve as anchoring sites for mitochondria and dynein. When mitochondrial inheritance is inhibited, mitochondrial-driven assembly of Num1 in buds is disrupted and defects in dynein-mediated spindle positioning are observed. Using a structure-function approach to dissect the mechanism of mitochondria-dependent dynein anchoring, we found that the EF hand-like motif (EFLM) of Num1 and its ability to bind calcium are required to bias dynein anchoring on mitochondria-associated Num1 clusters. Consistently, when the EFLM is disrupted, we no longer observe defects in dynein activity following inhibition of mitochondrial inheritance. Thus, the Num1 EFLM functions to bias dynein anchoring and activity in nuclear inheritance subsequent to mitochondrial inheritance. We hypothesize that this hierarchical integration of organelle positioning pathways by the Num1 EFLM contributes to the regulated order of organelle inheritance during the cell cycle.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Motivos EF Hand/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas del Citoesqueleto/fisiología , Dineínas/metabolismo , Motivos EF Hand/genética , Microtúbulos/metabolismo , Mitocondrias/metabolismo , Orgánulos/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Huso Acromático/metabolismo
9.
J Cell Biol ; 220(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34694321

RESUMEN

Few membrane contact sites have been defined at the molecular level. By using a high-throughput, microscopy-based screen, Eisenberg-Bord, Zung et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202104100) identify Cnm1 as a novel tethering protein that mediates contact between mitochondria and the nuclear ER in response to phospholipid levels.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Membranas , Proteínas
10.
MicroPubl Biol ; 20212021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34222836

RESUMEN

To better understand the mechanism of resistance caused by putative interactions between beta-tubulin and benzimidazole compounds, we sought to purify nematode-specific beta-tubulins using heterologous expression after replacement of the single Saccharomyces cerevisiae beta-tubulin gene. However, we found that haploid yeast cells containing nematode-specific beta-tubulin genes were not viable, suggesting that nematode beta-tubulin cannot substitute for the loss of the yeast beta-tubulin gene.

11.
Biochim Biophys Acta ; 1792(12): 1138-44, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19100831

RESUMEN

Mitochondria are highly dynamic organelles that continuously divide and fuse. These dynamic processes regulate the size, shape, and distribution of the mitochondrial network. In addition, mitochondrial division and fusion play critical roles in cell physiology. This review will focus on the dynamic process of mitochondrial division, which is highly conserved from yeast to humans. We will discuss what is known about how the essential components of the division machinery function to mediate mitochondrial division and then focus on proteins that have been implicated in division but whose functions remain unclear. We will then briefly discuss the cellular functions of mitochondrial division and the problems that arise when division is disrupted.


Asunto(s)
División Celular/fisiología , Mitocondrias/fisiología , Proteínas Mitocondriales/fisiología , Humanos , Saccharomyces cerevisiae
12.
Curr Opin Cell Biol ; 65: 58-65, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32208350

RESUMEN

Mitochondria make physical contact with nearly every other membrane in the cell, and these contacts have a wide variety of functions that are carried out by proteins that reside at the sites of contact. Over the past decade, tremendous insight into the identity and functions of proteins localized to mitochondrial contact sites has been gained. In doing so, it has become clear that one protein or protein complex can contribute to contact site formation and function in a wide variety of ways. Thus, complex and often surprising relationships between the roles of a mitochondrial contact site and its multifunctional resident proteins continue to be unraveled.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Modelos Biológicos
13.
Methods Cell Biol ; 155: 491-518, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32183974

RESUMEN

Mitochondria are required for cell survival and are best known for their role in energy production. These organelles also participate in many other biological processes that are critical for cellular function, and thus, play a central role in cellular life and death decisions. In a majority of cell types, mitochondria form highly dynamic, reticular networks. Maintaining the shape of these complex, ever-changing networks is critical for mitochondrial and cellular function, and requires the conserved activities of mitochondrial fission and fusion. Great advances in our knowledge about the molecular machines that mediate these dynamic activities have been made over the past 2 decades. These advances have been driven by the use of highly complementary in vitro and in vivo approaches that have proven extremely powerful for studying the complex membrane remodeling processes that drive fission and fusion of the organelle. In this chapter, we detail current methods used to examine the mechanisms and regulation of mitochondrial fission and fusion in vitro and in vivo.


Asunto(s)
Bioensayo/métodos , Dinámicas Mitocondriales , Animales , Cromatografía de Afinidad , Dinaminas/aislamiento & purificación , Dinaminas/metabolismo , Dinaminas/ultraestructura , Fluorescencia , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Liposomas , Ratones , Mitocondrias/metabolismo , Fotoblanqueo
14.
J Cell Biol ; 219(4)2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32328629

RESUMEN

The steady-state morphology of the mitochondrial network is maintained by a balance of constitutive fission and fusion reactions. Disruption of this steady-state morphology results in either a fragmented or elongated network, both of which are associated with altered metabolic states and disease. How the processes of fission and fusion are balanced by the cell is unclear. Here we show that mitochondrial fission and fusion are spatially coordinated at ER membrane contact sites (MCSs). Multiple measures indicate that the mitochondrial fusion machinery, Mitofusins, accumulate at ER MCSs where fusion occurs. Furthermore, fission and fusion machineries colocalize to form hotspots for membrane dynamics at ER MCSs that can persist through sequential events. Because these hotspots can undergo fission and fusion, they have the potential to quickly respond to metabolic cues. Indeed, we discover that ER MCSs define the interface between polarized and depolarized segments of mitochondria and can rescue the membrane potential of damaged mitochondria by ER-associated fusion.


Asunto(s)
Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Humanos , Células Tumorales Cultivadas
15.
Trends Cell Biol ; 29(7): 580-590, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30929794

RESUMEN

Mitochondria make functionally relevant contacts with most, if not all, other organelles in the cell. These contacts impact on mitochondrial behavior and function as well as on a wide variety of cellular functions. Many recent advances have been made in the rapidly growing field of mitochondria contact site biology, and these advances have expanded the known functions of mitochondria contact sites in exciting and unexpected ways.


Asunto(s)
Mitocondrias/metabolismo , Humanos , Orgánulos/metabolismo
16.
Mol Biol Cell ; 30(5): 691-702, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649994

RESUMEN

Mitochondrial anchors have functions that extend beyond simply positioning mitochondria. In budding yeast, mitochondria drive the assembly of the mitochondrial anchor protein Num1 into clusters, which serve to anchor mitochondria as well as dynein to the cell cortex. Here, we explore a conserved role for mitochondria in dynein anchoring by examining the tethering functions of the evolutionarily distant Schizosaccharomyces pombe Num1 homologue. In addition to its function in dynein anchoring, we find that S. pombe Num1, also known as Mcp5, interacts with and tethers mitochondria to the plasma membrane in S. pombe and Saccharomyces cerevisiae. Thus, the mitochondria and plasma membrane-binding domains of the Num1 homologues, as well as the membrane features these domains recognize, are conserved. In S. pombe, we find that mitochondria impact the assembly and cellular distribution of Num1 clusters and that Num1 clusters actively engaged in mitochondrial tethering serve as cortical attachment sites for dynein. Thus, mitochondria play a critical and conserved role in the formation and distribution of dynein-anchoring sites at the cell cortex and, as a consequence, impact dynein function. These findings shed light on an ancient mechanism of mitochondria-dependent dynein anchoring that is conserved over more than 450 million years of evolution, raising the intriguing possibility that the role mitochondria play in dynein anchoring and function extends beyond yeast to higher eukaryotes.


Asunto(s)
Dineínas/metabolismo , Mitocondrias/metabolismo , Membrana Celular/metabolismo , Secuencia Conservada , Meiosis , Lípidos de la Membrana/metabolismo , Unión Proteica , Dominios Proteicos , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo
17.
Nat Commun ; 10(1): 1287, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894536

RESUMEN

Close proximities between organelles have been described for decades. However, only recently a specific field dealing with organelle communication at membrane contact sites has gained wide acceptance, attracting scientists from multiple areas of cell biology. The diversity of approaches warrants a unified vocabulary for the field. Such definitions would facilitate laying the foundations of this field, streamlining communication and resolving semantic controversies. This opinion, written by a panel of experts in the field, aims to provide this burgeoning area with guidelines for the experimental definition and analysis of contact sites. It also includes suggestions on how to operationally and tractably measure and analyze them with the hope of ultimately facilitating knowledge production and dissemination within and outside the field of contact-site research.


Asunto(s)
Membrana Celular/metabolismo , Células Eucariotas/metabolismo , Membranas Intracelulares/metabolismo , Orgánulos/metabolismo , Terminología como Asunto , Animales , Fraccionamiento Celular/métodos , Membrana Celular/ultraestructura , Células Eucariotas/ultraestructura , Humanos , Membranas Intracelulares/ultraestructura , Microscopía/instrumentación , Microscopía/métodos , Orgánulos/ultraestructura , Proteínas/genética , Proteínas/metabolismo , Coloración y Etiquetado/métodos
18.
Mol Biol Cell ; 29(19): 2346-2357, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30044712

RESUMEN

Mitochondrial transport and anchoring mechanisms work in concert to position mitochondria to meet cellular needs. In yeast, Mmr1 functions as a mitochondrial adaptor for Myo2 to facilitate actin-based transport of mitochondria to the bud. Posttransport, Mmr1 is proposed to anchor mitochondria at the bud tip. Although both functions require an interaction between Mmr1 and mitochondria, the molecular basis of the Mmr1-mitochondria interaction is poorly understood. Our in vitro phospholipid binding assays indicate Mmr1 can directly interact with phospholipid membranes. Through structure-function studies we identified an unpredicted membrane-binding domain composed of amino acids 76-195 that is both necessary and sufficient for Mmr1 to interact with mitochondria in vivo and liposomes in vitro. In addition, our structure-function analyses indicate that the coiled-coil domain of Mmr1 is necessary and sufficient for Mmr1 self-interaction and facilitates the polarized localization of the protein. Disrupting either the Mmr1-membrane interaction or Mmr1 self-interaction leads to defects in mitochondrial inheritance. Therefore, direct membrane binding and self-interaction are necessary for Mmr1 function in mitochondrial inheritance and are utilized as a means to spatially and temporally regulate mitochondrial positioning.


Asunto(s)
Patrón de Herencia , Membrana Dobles de Lípidos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriales/química , Fosfolípidos/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas de Saccharomyces cerevisiae/química
19.
Cell Cycle ; 17(11): 1345-1357, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29976118

RESUMEN

Organelle distribution is regulated over the course of the cell cycle to ensure that each of the cells produced at the completion of division inherits a full complement of organelles. In yeast, the protein Num1 functions in the positioning and inheritance of two essential organelles, mitochondria and the nucleus. Specifically, Num1 anchors mitochondria as well as dynein to the cell cortex, and this anchoring activity is required for proper mitochondrial distribution and dynein-mediated nuclear inheritance. The assembly of Num1 into clusters at the plasma membrane is critical for both of its anchoring functions. We have previously shown that mitochondria drive the assembly of Num1 clusters and that these mitochondria-assembled Num1 clusters serve as cortical attachment sites for dynein. Here we further examine the role for mitochondria in dynein anchoring. Using a GFP-αGFP nanobody targeting system, we synthetically clustered Num1 on eisosomes to bypass the requirement for mitochondria in Num1 cluster formation. Utilizing this system, we found that mitochondria positively impact the ability of synthetically clustered Num1 to anchor dynein and support dynein function even when mitochondria are no longer required for cluster formation. Thus, the role of mitochondria in regulating dynein function extends beyond simply concentrating Num1; mitochondria likely promote an arrangement of Num1 within a cluster that is competent for dynein anchoring. This functional dependency between mitochondrial and nuclear positioning pathways likely serves as a mechanism to order and integrate major cellular organization systems over the course of the cell cycle.


Asunto(s)
Dineínas/metabolismo , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo
20.
J Cell Biol ; 216(10): 3061-3071, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28835466

RESUMEN

Interorganelle contacts facilitate communication between organelles and impact fundamental cellular functions. In this study, we examine the assembly of the MECA (mitochondria-endoplasmic reticulum [ER]-cortex anchor), which tethers mitochondria to the ER and plasma membrane. We find that the assembly of Num1, the core component of MECA, requires mitochondria. Once assembled, Num1 clusters persistently anchor mitochondria to the cell cortex. Num1 clusters also function to anchor dynein to the plasma membrane, where dynein captures and walks along astral microtubules to help orient the mitotic spindle. We find that dynein is anchored by Num1 clusters that have been assembled by mitochondria. When mitochondrial inheritance is inhibited, Num1 clusters are not assembled in the bud, and defects in dynein-mediated spindle positioning are observed. The mitochondria-dependent assembly of a dual-function cortical anchor provides a mechanism to integrate the positioning and inheritance of the two essential organelles and expands the function of organelle contact sites.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Dineínas/metabolismo , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo , Proteínas del Citoesqueleto/genética , Dineínas/genética , Retículo Endoplásmico/genética , Mitocondrias/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Huso Acromático/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA