Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Appl Opt ; 63(16): 4447-4464, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856627

RESUMEN

The Laser Megajoule (LMJ) is among the most energetic inertial confinement fusion laser facilities in the world, together with the National Ignition Facility (NIF) in the USA. The construction of the facility began back in 2003, and the first photons were emitted by the laser bundle #28 in 2014. Today, 11 laser bundles consisting of 88 large aperture 0.35×0.35m 2 laser beams are in operation, delivering daily up to 330 kJ of energy at the wavelength of 351 nm on a target placed in the center of a 10 m diameter vacuum chamber. In this paper, we describe the laser system and its operational performances. We also detail the first laser campaigns carried out to prepare an increase of energy and power on the target. These campaigns, along with the completion of additional bundles mounting, will bring LMJ performance to 1.3 MJ thanks to 22 bundles in operation.

2.
Opt Express ; 31(3): 4291-4305, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785401

RESUMEN

Large fusion scale laser facilities aim at delivering megajoules laser energy in the UV spectrum and nanosecond regime. Due to the extreme laser energies, the laser damage of final optics of such beamlines is an important issue that must be addressed. Once a damage site initiates, it grows at each laser shot which decreases the quality of the optical component and spoil laser performances. Operation at full energy and power of such laser facilities requires a perfect control of damage kinetics and laser parameters. Monitoring damage kinetics involves onsite observation, understanding of damage growth process and prediction of growth features. Facilities are equipped with cameras dedicated to the monitoring of damage site growth. Here we propose to design and manufacture a dedicated full size optical component to study damage growth at increased energy, on the beamline, i.e. in the real environment of the optics on a large laser facility. Used for the first time in 2021, the growth statistics acquired by this approach at the Laser MegaJoule (LMJ) facility provides a new calibration point at a fluence less than 5 J cm-2 and a flat-in-time pulse of 3 ns.

3.
Opt Lett ; 48(2): 481-484, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36638489

RESUMEN

Fused silica is prone to damage under ultraviolet laser irradiation. Because they are key components to achieve fusion on high energy laser facilities, final fused silica optics are analyzed after each laser shot. The quantification of damage sites is limited by the image resolution. Measurements of scattered light by damage sites allow for sub-pixel detection and growth monitoring after a calibration step based on time-consuming measurements at laser facilities. It is proven herein that modeling laser damage size monitoring based on light scattering is efficient to link gray levels to damage diameters, thereby avoiding any experimental calibration based on reference optics at the facility.


Asunto(s)
Rayos Láser , Luz , Calibración , Rayos Ultravioleta , Dióxido de Silicio
4.
Opt Lett ; 48(22): 5835-5838, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966731

RESUMEN

Laser-induced damage growth on the exit surface of fused silica optics triggered by nanosecond pulses at 351 nm is widely described with exponential dynamics. In this Letter, a particular experimental setup allowed us to study damage growth with a large beam and fluences near damage growth threshold for a high number of shots. This allowed us to observe and characterize a regime with a slow and linear growth dynamic not documented in the literature and yet fundamental for the operation of high-power laser installations.

5.
Appl Opt ; 62(11): 2720-2726, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37133111

RESUMEN

In laser damage experiments, damage initiation and growth are typically monitored by imaging the surface of the tested fused silica sample, ignoring their bulk morphology. The depth of a damage site in fused silica optics is considered to be proportional to its equivalent diameter. However, some damage sites experience phases with no diameter changes but growth in the bulk independently from their surface. A proportionality relationship with the damage diameter does not accurately describe the growth of such sites. In the following, an accurate estimator for damage depth is proposed, which is based on the hypothesis that the light intensity scattered by a damage site is proportional to its volume. Such an estimator, using the pixel intensity, describes the change of damage depth through successive laser irradiations, including phases in which depth and diameter variations are uncorrelated.

6.
J Opt Soc Am A Opt Image Sci Vis ; 39(10): 1881-1892, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36215561

RESUMEN

Laser-induced damage is a major issue in high power laser facilities such as the Laser MégaJoule (LMJ) and National Ignition Facility (NIF) since they lower the efficiency of optical components and may even require their replacement. This problem occurs mainly in the final stages of the laser beamlines and in particular in the glass windows through which laser beams enter the central vacuum chamber. Monitoring such damage sites in high energy laser facilities is, therefore, of major importance. However, the automatic monitoring of damage sites is challenging due to the small size of damage sites and to the low-resolution images provided by the onsite camera used to monitor their occurrence. A systematic approach based on a deep learning computer vision pipeline is introduced to estimate the dimensions of damage sites of the glass windows of the LMJ facility. The ability of the pipeline to specialize in the estimation of damage sites of a size less than the repair threshold is demonstrated by showing its higher efficiency than classical machine learning approaches in the specific case of damage site images. In addition, its performances on three datasets are evaluated to show both robustness and accuracy.

7.
Opt Express ; 29(22): 35820-35836, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34809008

RESUMEN

Fused silica optics are key components to manipulate high energy Inertial Confinement Fusion (ICF) laser beams but their optical properties can be degraded by laser-induced damage. The detection of laser damage sites is of major importance. The challenge is to monitor damage initiation and growth at sub-pixel scale with highly sensitive measurements. The damage diameter is a widely used indicator to quantify damage growth but its accuracy is strongly dependent on the available image resolution. More recently, it was shown that registration residual maps (i.e., gray level differences between two registered images) could also be used to monitor laser-induced damage. In this paper, the performance of both indicators are compared to detect laser damage initiation and growth at high and low image resolutions thanks to a highly instrumented laser setup. The results prove that registration residual maps are more efficient to detect sub-pixel laser damage growth than diameter measurements at a given image resolution. The registration residual maps are therefore a powerful indicator for monitoring laser-induced damage initiation and growth at sub-pixel scale either for laser damage metrology setups, for high energy laser facilities, or other situations where damage is suspected to occur. The accuracy of (laser-induced) damage laws may also be improved thanks to this tool.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA