Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 177(3): 782-796.e27, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30955892

RESUMEN

G protein-coupled receptor (GPCR) signaling is the primary method eukaryotes use to respond to specific cues in their environment. However, the relationship between stimulus and response for each GPCR is difficult to predict due to diversity in natural signal transduction architecture and expression. Using genome engineering in yeast, we constructed an insulated, modular GPCR signal transduction system to study how the response to stimuli can be predictably tuned using synthetic tools. We delineated the contributions of a minimal set of key components via computational and experimental refactoring, identifying simple design principles for rationally tuning the dose response. Using five different GPCRs, we demonstrate how this enables cells and consortia to be engineered to respond to desired concentrations of peptides, metabolites, and hormones relevant to human health. This work enables rational tuning of cell sensing while providing a framework to guide reprogramming of GPCR-based signaling in other systems.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Expresión Génica/efectos de los fármacos , Ingeniería Genética , Humanos , Feromonas/farmacología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Nature ; 587(7835): 650-656, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33149304

RESUMEN

G-protein-coupled receptors (GPCRs) are membrane proteins that modulate physiology across human tissues in response to extracellular signals. GPCR-mediated signalling can differ because of changes in the sequence1,2 or expression3 of the receptors, leading to signalling bias when comparing diverse physiological systems4. An underexplored source of such bias is the generation of functionally diverse GPCR isoforms with different patterns of expression across different tissues. Here we integrate data from human tissue-level transcriptomes, GPCR sequences and structures, proteomics, single-cell transcriptomics, population-wide genetic association studies and pharmacological experiments. We show how a single GPCR gene can diversify into several isoforms with distinct signalling properties, and how unique isoform combinations expressed in different tissues can generate distinct signalling states. Depending on their structural changes and expression patterns, some of the detected isoforms may influence cellular responses to drugs and represent new targets for developing drugs with improved tissue selectivity. Our findings highlight the need to move from a canonical to a context-specific view of GPCR signalling that considers how combinatorial expression of isoforms in a particular cell type, tissue or organism collectively influences receptor signalling and drug responses.


Asunto(s)
Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Transcriptoma , Bases de Datos Factuales , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Terapia Molecular Dirigida , Especificidad de Órganos/efectos de los fármacos , Isoformas de Proteínas/genética , Proteómica , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/genética , Análisis de la Célula Individual
3.
Diabetologia ; 67(3): 528-546, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38127123

RESUMEN

AIMS/HYPOTHESIS: Diabetes mellitus is associated with impaired insulin secretion, often aggravated by oversecretion of glucagon. Therapeutic interventions should ideally correct both defects. Glucagon-like peptide 1 (GLP-1) has this capability but exactly how it exerts its glucagonostatic effect remains obscure. Following its release GLP-1 is rapidly degraded from GLP-1(7-36) to GLP-1(9-36). We hypothesised that the metabolite GLP-1(9-36) (previously believed to be biologically inactive) exerts a direct inhibitory effect on glucagon secretion and that this mechanism becomes impaired in diabetes. METHODS: We used a combination of glucagon secretion measurements in mouse and human islets (including islets from donors with type 2 diabetes), total internal reflection fluorescence microscopy imaging of secretory granule dynamics, recordings of cytoplasmic Ca2+ and measurements of protein kinase A activity, immunocytochemistry, in vivo physiology and GTP-binding protein dissociation studies to explore how GLP-1 exerts its inhibitory effect on glucagon secretion and the role of the metabolite GLP-1(9-36). RESULTS: GLP-1(7-36) inhibited glucagon secretion in isolated islets with an IC50 of 2.5 pmol/l. The effect was particularly strong at low glucose concentrations. The degradation product GLP-1(9-36) shared this capacity. GLP-1(9-36) retained its glucagonostatic effects after genetic/pharmacological inactivation of the GLP-1 receptor. GLP-1(9-36) also potently inhibited glucagon secretion evoked by ß-adrenergic stimulation, amino acids and membrane depolarisation. In islet alpha cells, GLP-1(9-36) led to inhibition of Ca2+ entry via voltage-gated Ca2+ channels sensitive to ω-agatoxin, with consequential pertussis-toxin-sensitive depletion of the docked pool of secretory granules, effects that were prevented by the glucagon receptor antagonists REMD2.59 and L-168049. The capacity of GLP-1(9-36) to inhibit glucagon secretion and reduce the number of docked granules was lost in alpha cells from human donors with type 2 diabetes. In vivo, high exogenous concentrations of GLP-1(9-36) (>100 pmol/l) resulted in a small (30%) lowering of circulating glucagon during insulin-induced hypoglycaemia. This effect was abolished by REMD2.59, which promptly increased circulating glucagon by >225% (adjusted for the change in plasma glucose) without affecting pancreatic glucagon content. CONCLUSIONS/INTERPRETATION: We conclude that the GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of glucagon secretion. We propose that the increase in circulating glucagon observed following genetic/pharmacological inactivation of glucagon signalling in mice and in people with type 2 diabetes reflects the removal of GLP-1(9-36)'s glucagonostatic action.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemia , Islotes Pancreáticos , Fragmentos de Péptidos , Humanos , Glucagón/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Islotes Pancreáticos/metabolismo , Hipoglucemia/metabolismo , Insulina/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(48): 24093-24099, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31712427

RESUMEN

Receptor-activity-modifying proteins (RAMPs) are single transmembrane-spanning proteins which serve as molecular chaperones and allosteric modulators of G-protein-coupled receptors (GPCRs) and their signaling pathways. Although RAMPs have been previously studied in the context of their effects on Family B GPCRs, the coevolution of RAMPs with many GPCR families suggests an expanded repertoire of potential interactions. Using bioluminescence resonance energy transfer-based and cell-surface expression approaches, we comprehensively screen for RAMP interactions within the chemokine receptor family and identify robust interactions between RAMPs and nearly all chemokine receptors. Most notably, we identify robust RAMP interaction with atypical chemokine receptors (ACKRs), which function to establish chemotactic gradients for directed cell migration. Specifically, RAMP3 association with atypical chemokine receptor 3 (ACKR3) diminishes adrenomedullin (AM) ligand availability without changing G-protein coupling. Instead, RAMP3 is required for the rapid recycling of ACKR3 to the plasma membrane through Rab4-positive vesicles following either AM or SDF-1/CXCL12 binding, thereby enabling formation of dynamic spatiotemporal chemotactic gradients. Consequently, genetic deletion of either ACKR3 or RAMP3 in mice abolishes directed cell migration of retinal angiogenesis. Thus, RAMP association with chemokine receptor family members represents a molecular interaction to control receptor signaling and trafficking properties.


Asunto(s)
Proteína 3 Modificadora de la Actividad de Receptores/fisiología , Receptores CCR3/metabolismo , Transferencia de Energía por Resonancia de Bioluminiscencia , Movimiento Celular , Células HEK293 , Humanos , Lisosomas/metabolismo , Neovascularización Fisiológica , Proteína 3 Modificadora de la Actividad de Receptores/genética , Proteína 3 Modificadora de la Actividad de Receptores/metabolismo , Receptores CXCR/metabolismo , Transducción de Señal
5.
Biochem Soc Trans ; 49(4): 1695-1709, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34282836

RESUMEN

Adhesion G protein-coupled receptors (aGPCRs) form a sub-group within the GPCR superfamily. Their distinctive structure contains an abnormally large N-terminal, extracellular region with a GPCR autoproteolysis-inducing (GAIN) domain. In most aGPCRs, the GAIN domain constitutively cleaves the receptor into two fragments. This process is often required for aGPCR signalling. Over the last two decades, much research has focussed on aGPCR-ligand interactions, in an attempt to deorphanize the family. Most ligands have been found to bind to regions N-terminal to the GAIN domain. These receptors may bind a variety of ligands, ranging across membrane-bound proteins and extracellular matrix components. Recent advancements have revealed a conserved method of aGPCR activation involving a tethered ligand within the GAIN domain. Evidence for this comes from increased activity in receptor mutants exposing the tethered ligand. As a result, G protein-coupling partners of aGPCRs have been more extensively characterised, making use of their tethered ligand to create constitutively active mutants. This has led to demonstrations of aGPCR function in, for example, neurodevelopment and tumour growth. However, questions remain around the ligands that may bind many aGPCRs, how this binding is translated into changes in the GAIN domain, and the exact mechanism of aGPCR activation following GAIN domain conformational changes. This review aims to examine the current knowledge around aGPCR activation, including ligand binding sites, the mechanism of GAIN domain-mediated receptor activation and how aGPCR transmembrane domains may relate to activation. Other aspects of aGPCR signalling will be touched upon, such as downstream effectors and physiological roles.


Asunto(s)
Receptores Acoplados a Proteínas G/fisiología , Animales , Humanos , Ligandos , Unión Proteica , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Terminología como Asunto
6.
J Chem Inf Model ; 61(4): 2001-2015, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33779168

RESUMEN

Despite being a target for about one-third of approved drugs, G protein-coupled receptors (GPCRs) still represent a tremendous reservoir for therapeutic strategies against diseases. For example, several cardiovascular and central nervous system conditions could benefit from clinical agents that activate the adenosine 1 receptor (A1R); however, the pursuit of A1R agonists for clinical use is usually impeded by both on- and off-target side effects. One of the possible strategies to overcome this issue is the development of positive allosteric modulators (PAMs) capable of selectively enhancing the effect of a specific receptor subtype and triggering functional selectivity (a phenomenon also referred to as bias). Intriguingly, besides enforcing the effect of agonists upon binding to an allosteric site, most of the A1R PAMs display intrinsic partial agonism and orthosteric competition with antagonists. To rationalize this behavior, we simulated the binding of the prototypical PAMs PD81723 and VCP171, the full-agonist NECA, the antagonist 13B, and the bitopic agonist VCP746. We propose that a single PAM can bind several A1R sites rather than a unique allosteric pocket, reconciling the structure-activity relationship and the mutagenesis results.


Asunto(s)
Receptor de Adenosina A1 , Receptores Acoplados a Proteínas G , Regulación Alostérica , Sitio Alostérico , Relación Estructura-Actividad
8.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34575827

RESUMEN

The paucity of currently available therapies for glioblastoma multiforme requires novel approaches to the treatment of this brain tumour. Disrupting cyclic nucleotide-signalling through phosphodiesterase (PDE) inhibition may be a promising way of suppressing glioblastoma growth. Here, we examined the effects of 28 PDE inhibitors, covering all the major PDE classes, on the proliferation of the human U87MG, A172 and T98G glioblastoma cells. The PDE10A inhibitors PF-2545920, PQ10 and papaverine, the PDE3/4 inhibitor trequinsin and the putative PDE5 inhibitor MY-5445 potently decreased glioblastoma cell proliferation. The synergistic suppression of glioblastoma cell proliferation was achieved by combining PF-2545920 and MY-5445. Furthermore, a co-incubation with drugs that block the activity of the multidrug resistance-associated protein 1 (MRP1) augmented these effects. In particular, a combination comprising the MRP1 inhibitor reversan, PF-2545920 and MY-5445, all at low micromolar concentrations, afforded nearly complete inhibition of glioblastoma cell growth. Thus, the potent suppression of glioblastoma cell viability may be achieved by combining MRP1 inhibitors with PDE inhibitors at a lower toxicity than that of the standard chemotherapeutic agents, thereby providing a new combination therapy for this challenging malignancy.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Sinergismo Farmacológico , Glioblastoma , Humanos , Pirazoles/farmacología , Quinolinas/farmacología
9.
Stem Cells ; 37(3): 318-331, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30512203

RESUMEN

Direct reprogramming of human somatic cells toward induced pluripotent stem cells holds great promise for regenerative medicine and basic biology. We used a high-throughput small interfering RNA screening assay in the initiation phase of reprogramming for 784 genes belonging to kinase and phosphatase families and identified 68 repressors and 22 effectors. Six new candidates belonging to the family of the G protein-coupled receptors (GPCRs) were identified, suggesting an important role for this key signaling pathway during somatic cell-induced reprogramming. Downregulation of one of the key GPCR effectors, endothelial differentiation GPCR5 (EDG5), impacted the maintenance of pluripotency, actin cytoskeleton organization, colony integrity, and focal adhesions in human embryonic stem cells, which were associated with the alteration in the RhoA-ROCK-Cofilin-PAXILLIN-actin signaling pathway. Similarly, downregulation of EDG5 during the initiation stage of somatic cell-induced reprogramming resulted in alteration of cytoskeleton, loss of human-induced pluripotent stem cell colony integrity, and a significant reduction in partially and fully reprogrammed cells as well as the number of alkaline phosphatase positive colonies at the end of the reprogramming process. Together, these data point to an important role of EDG5 in the maintenance and acquisition of pluripotency. Stem Cells 2019;37:318-331.


Asunto(s)
Reprogramación Celular , Regulación hacia Abajo , Células Madre Embrionarias Humanas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Transducción de Señal , Receptores de Esfingosina-1-Fosfato/metabolismo , Línea Celular , Células Madre Embrionarias Humanas/citología , Humanos , Células Madre Pluripotentes Inducidas/citología , Receptores de Esfingosina-1-Fosfato/genética
10.
J Chem Inf Model ; 59(12): 5183-5197, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31725294

RESUMEN

Adenosine A3 receptor (A3R) is a promising drug target cancer and for a number of other conditions like inflammatory diseases, including asthma and rheumatoid arthritis, glaucoma, chronic obstructive pulmonary disease, and ischemic injury. Currently, there is no experimentally determined structure of A3R. We explored the binding profile of O4-{[3-(2,6-dichlorophenyl)-5-methylisoxazol-4-yl]carbonyl}-2-methyl-1,3-thiazole-4-carbohydroximamide (K18), which is a new specific and competitive antagonist at the orthosteric binding site of A3R. MD simulations and MM-GBSA calculations of the WT A3R in complex with K18 combined with in vitro mutagenic studies show that the most plausible binding conformation for the dichlorophenyl group of K18 is oriented toward trans-membrane helices (TM) 5, 6 and reveal important residues for binding. Further, MM-GBSA calculations distinguish mutations that reduce or maintain or increase antagonistic activity. Our studies show that selectivity of K18 toward A3R is defined not only by direct interactions with residues within the orthosteric binding area but also by remote residues playing a significant role. Although V1695.30 is considered to be a selectivity filter for A3R binders, when it was mutated to glutamic acid, K18 maintained antagonistic potency, in agreement with our previous results obtained for agonists binding profile investigation. Mutation of the direct interacting residue L903.32 in the low region and the remote L2647.35 in the middle/upper region to alanine increases antagonistic potency, suggesting an empty space in the orthosteric area available for increasing antagonist potency. These results approve the computational model for the description of K18 binding at A3R, which we previously performed for agonists binding to A3R, and the design of more effective antagonists based on K18.


Asunto(s)
Antagonistas del Receptor de Adenosina A3/farmacología , Simulación de Dinámica Molecular , Mutagénesis , Receptor de Adenosina A3/metabolismo , Antagonistas del Receptor de Adenosina A3/química , Antagonistas del Receptor de Adenosina A3/metabolismo , Amidas/química , Amidas/metabolismo , Amidas/farmacología , Melfalán/metabolismo , Melfalán/farmacología , Simulación del Acoplamiento Molecular , Distribución de Poisson , Unión Proteica , Conformación Proteica , Receptor de Adenosina A3/química , Receptor de Adenosina A3/genética , Especificidad por Sustrato , Termodinámica , gammaglobulinas/metabolismo , gammaglobulinas/farmacología
11.
J Biol Chem ; 291(42): 21925-21944, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27566546

RESUMEN

The calcitonin gene-related peptide (CGRP) family of G protein-coupled receptors (GPCRs) is formed through the association of the calcitonin receptor-like receptor (CLR) and one of three receptor activity-modifying proteins (RAMPs). Binding of one of the three peptide ligands, CGRP, adrenomedullin (AM), and intermedin/adrenomedullin 2 (AM2), is well known to result in a Gαs-mediated increase in cAMP. Here we used modified yeast strains that couple receptor activation to cell growth, via chimeric yeast/Gα subunits, and HEK-293 cells to characterize the effect of different RAMP and ligand combinations on this pathway. We not only demonstrate functional couplings to both Gαs and Gαq but also identify a Gαi component to CLR signaling in both yeast and HEK-293 cells, which is absent in HEK-293S cells. We show that the CGRP family of receptors displays both ligand- and RAMP-dependent signaling bias among the Gαs, Gαi, and Gαq/11 pathways. The results are discussed in the context of RAMP interactions probed through molecular modeling and molecular dynamics simulations of the RAMP-GPCR-G protein complexes. This study further highlights the importance of RAMPs to CLR pharmacology and to bias in general, as well as identifying the importance of choosing an appropriate model system for the study of GPCR pharmacology.


Asunto(s)
Adrenomedulina/metabolismo , AMP Cíclico/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Sistemas de Mensajero Secundario/fisiología , Adrenomedulina/genética , AMP Cíclico/genética , Subunidades alfa de la Proteína de Unión al GTP/genética , Células HEK293 , Humanos , Proteínas Nucleares/genética , Receptores de Péptido Relacionado con el Gen de Calcitonina/genética
12.
J Biol Chem ; 290(38): 23009-22, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26198634

RESUMEN

The glucagon and glucagon-like peptide-1 (GLP-1) receptors play important, opposing roles in regulating blood glucose levels. Consequently, these receptors have been identified as targets for novel diabetes treatments. However, drugs acting at the GLP-1 receptor, although having clinical efficacy, have been associated with severe adverse side-effects, and targeting of the glucagon receptor has yet to be successful. Here we use a combination of yeast reporter assays and mammalian systems to provide a more complete understanding of glucagon receptor signaling, considering the effect of multiple ligands, association with the receptor-interacting protein receptor activity-modifying protein-2 (RAMP2), and the role of individual G protein α-subunits. We demonstrate that RAMP2 alters both ligand selectivity and G protein preference of the glucagon receptor. Importantly, we also uncover novel cross-reactivity of therapeutically used GLP-1 receptor ligands at the glucagon receptor that is abolished by RAMP2 interaction. This study reveals the glucagon receptor as a previously unidentified target for GLP-1 receptor agonists and highlights a role for RAMP2 in regulating its pharmacology. Such previously unrecognized functions of RAMPs highlight the need to consider all receptor-interacting proteins in future drug development.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Glucagón/farmacología , Proteína 2 Modificadora de la Actividad de Receptores/metabolismo , Receptor del Péptido 1 Similar al Glucagón/genética , Células HEK293 , Humanos , Ligandos , Proteína 2 Modificadora de la Actividad de Receptores/genética
13.
Biochem Soc Trans ; 44(2): 568-73, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27068971

RESUMEN

Receptor activity-modifying proteins (RAMPs) are single pass membrane proteins initially identified by their ability to determine the pharmacology of the calcitonin receptor-like receptor (CLR), a family B G protein-coupled receptor (GPCR). It is now known that RAMPs can interact with a much wider range of GPCRs. This review considers recent developments on the structure of the complexes formed between the extracellular domains (ECDs) of CLR and RAMP1 or RAMP2 as these provide insights as to how the RAMPs direct ligand binding. The range of RAMP interactions is also considered; RAMPs can interact with numerous family B GPCRs as well as examples of family A and family C GPCRs. They influence receptor expression at the cell surface, trafficking, ligand binding and G protein coupling. The GPCR-RAMP interface offers opportunities for drug targeting, illustrated by examples of drugs developed for migraine.


Asunto(s)
Proteínas Modificadoras de la Actividad de Receptores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Conformación Proteica
14.
Cell Commun Signal ; 14: 5, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26861207

RESUMEN

BACKGROUND: Growth factors induce a characteristically short-lived Ras activation in cells emerging from quiescence. Extensive work has shown that transient as opposed to sustained Ras activation is critical for the induction of mitogenic programs. Mitogen-induced accumulation of active Ras-GTP results from increased nucleotide exchange driven by the nucleotide exchange factor Sos. In contrast, the mechanism accounting for signal termination and prompt restoration of basal Ras-GTP levels is unclear, but has been inferred to involve feedback inhibition of Sos. Remarkably, how GTP-hydrolase activating proteins (GAPs) participate in controlling the rise and fall of Ras-GTP levels is unknown. RESULTS: Monitoring nucleotide exchange of Ras in permeabilized cells we find, unexpectedly, that the decline of growth factor-induced Ras-GTP levels proceeds in the presence of unabated high nucleotide exchange, pointing to GAP activation as a major mechanism of signal termination. Experiments with non-hydrolysable GTP analogues and mathematical modeling confirmed and rationalized the presence of high GAP activity as Ras-GTP levels decline in a background of high nucleotide exchange. Using pharmacological and genetic approaches we document a raised activity of the neurofibromatosis type I tumor suppressor Ras-GAP neurofibromin and an involvement of Rsk1 and Rsk2 in the down-regulation of Ras-GTP levels. CONCLUSIONS: Our findings show that, in addition to feedback inhibition of Sos, feedback stimulation of the RasGAP neurofibromin enforces termination of the Ras signal in the context of growth-factor signaling. These findings ascribe a precise role to neurofibromin in growth factor-dependent control of Ras activity and illustrate how, by engaging Ras-GAP activity, mitogen-challenged cells play safe to ensure a timely termination of the Ras signal irrespectively of the reigning rate of nucleotide exchange.


Asunto(s)
Activación Enzimática , Factor de Crecimiento Epidérmico/metabolismo , Neurofibromina 1/metabolismo , Transducción de Señal , Proteínas ras/metabolismo , Animales , Línea Celular , Guanosina Trifosfato/metabolismo , Células HEK293 , Células HeLa , Humanos , Sistema de Señalización de MAP Quinasas , Ratones , Fosforilación , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Proteína Son Of Sevenless Drosofila/metabolismo
15.
Biochim Biophys Acta ; 1838(12): 3036-51, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25157670

RESUMEN

G protein-coupled receptors (GPCRs) are the largest family of cell-surface receptors in mammals and facilitate a range of physiological responses triggered by a variety of ligands. GPCRs were thought to function as monomers, however it is now accepted that GPCR homo- and hetero-oligomers also exist and influence receptor properties. The Schizosaccharomyces pombe GPCR Mam2 is a pheromone-sensing receptor involved in mating and has previously been shown to form oligomers in vivo. The first transmembrane domain (TMD) of Mam2 contains a small-XXX-small motif, overrepresented in membrane proteins and well-known for promoting helix-helix interactions. An ortholog of Mam2 in Saccharomyces cerevisiae, Ste2, contains an analogous small-XXX-small motif which has been shown to contribute to receptor homo-oligomerization, localization and function. Here we have used experimental and computational techniques to characterize the role of the small-XXX-small motif in function and assembly of Mam2 for the first time. We find that disruption of the motif via mutagenesis leads to reduction of Mam2 TMD1 homo-oligomerization and pheromone-responsive cellular signaling of the full-length protein. It also impairs correct targeting to the plasma membrane. Mutation of the analogous motif in Ste2 yielded similar results, suggesting a conserved mechanism for assembly. Using co-expression of the two fungal receptors in conjunction with computational models, we demonstrate a functional change in G protein specificity and propose that this is brought about through hetero-dimeric interactions of Mam2 with Ste2 via the complementary small-XXX-small motifs. This highlights the potential of these motifs to affect a range of properties that can be investigated in other GPCRs.

16.
Biol Chem ; 396(8): 831-48, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25781681

RESUMEN

Ras is a prototypical small G-protein and a central regulator of growth, proliferation and differentiation processes in virtually every nucleated cell. As such, Ras becomes engaged and activated by multiple growth factors, mitogens, cytokines or adhesion receptors. Ras activation comes about by changes in the steady-state equilibrium between the inactive guanosine diphosphate (GDP)-bound and active guanosine triphosphate (GTP)-bound states of Ras, resulting in the mostly transient accumulation of Ras-GTP. Three decades of intense Ras research have disclosed various families of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) as the two principal regulatory elements of the Ras-GDP/GTP loading status. However, with the possible exception of the GEF Sos, we still have only a rudimentary knowledge of the precise role played by many GEF and GAP members in the signalling network upstream of Ras. As for GAPs, we even lack the fundamental understanding of whether they function as genuine signal transducers in the context of growth factor-elicited Ras activation or rather act as passive modulators of the Ras-GDP/GTP cycle. Here we sift through the large body of Ras literature and review the relevant data for understanding the participation and precise role played by GEFs and GAPs in the process of Ras activation.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas ras/metabolismo , Animales , Factores de Intercambio de Guanina Nucleótido/genética , Guanosina Trifosfato/metabolismo , Humanos , Unión Proteica , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas ras/genética
17.
Cytometry A ; 87(6): 471-80, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25492625

RESUMEN

A key feature of directed cell movement is the ability of cells to reorient quickly in response to changes in the direction of an extracellular stimulus. Mathematical models have suggested quite different regulatory mechanisms to explain reorientation, raising the question of how we can validate these models in a rigorous way. In this study, we fit three reaction-diffusion models to experimental data of Dictyostelium amoebae reorienting in response to alternating gradients of mechanical shear flow. The experimental readouts we use to fit are spatio-temporal distributions of a fluorescent reporter for cortical F-actin labeling the cell front. Experiments performed under different conditions are fitted simultaneously to challenge the models with different types of cellular dynamics. Although the model proposed by Otsuji is unable to provide a satisfactory fit, those suggested by Meinhardt and Levchenko fit equally well. Further, we show that reduction of the three-variable Meinhardt model to a two-variable model also provides an excellent fit, but has the advantage of all parameters being uniquely identifiable. Our work demonstrates that model selection and identifiability analysis, commonly applied to temporal dynamics problems in systems biology, can be a powerful tool when extended to spatio-temporal imaging data.


Asunto(s)
Movimiento Celular/fisiología , Dictyostelium/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Biológicos , Actinas/fisiología , Biología Computacional/métodos , Hidrodinámica , Microscopía Fluorescente , Modelos Teóricos , Biología de Sistemas/métodos
19.
J Math Biol ; 71(2): 399-436, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25174444

RESUMEN

We present a novel parameter identification algorithm for the estimation of parameters in models of cell motility using imaging data of migrating cells. Two alternative formulations of the objective functional that measures the difference between the computed and observed data are proposed and the parameter identification problem is formulated as a minimisation problem of nonlinear least squares type. A Levenberg-Marquardt based optimisation method is applied to the solution of the minimisation problem and the details of the implementation are discussed. A number of numerical experiments are presented which illustrate the robustness of the algorithm to parameter identification in the presence of large deformations and noisy data and parameter identification in three dimensional models of cell motility. An application to experimental data is also presented in which we seek to identify parameters in a model for the monopolar growth of fission yeast cells using experimental imaging data. Our numerical tests allow us to compare the method with the two different formulations of the objective functional and we conclude that the results with both objective functionals seem to agree.


Asunto(s)
Movimiento Celular , Modelos Biológicos , Algoritmos , Biología Computacional , Simulación por Computador , Imagenología Tridimensional , Análisis de los Mínimos Cuadrados , Conceptos Matemáticos , Schizosaccharomyces/citología , Schizosaccharomyces/crecimiento & desarrollo
20.
J Biol Chem ; 288(38): 27327-27342, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23900842

RESUMEN

G protein-coupled receptors (GPCRs) can interact with regulator of G protein signaling (RGS) proteins. However, the effects of such interactions on signal transduction and their physiological relevance have been largely undetermined. Ligand-bound GPCRs initiate by promoting exchange of GDP for GTP on the Gα subunit of heterotrimeric G proteins. Signaling is terminated by hydrolysis of GTP to GDP through intrinsic GTPase activity of the Gα subunit, a reaction catalyzed by RGS proteins. Using yeast as a tool to study GPCR signaling in isolation, we define an interaction between the cognate GPCR (Mam2) and RGS (Rgs1), mapping the interaction domains. This reaction tethers Rgs1 at the plasma membrane and is essential for physiological signaling response. In vivo quantitative data inform the development of a kinetic model of the GTPase cycle, which extends previous attempts by including GPCR-RGS interactions. In vivo and in silico data confirm that GPCR-RGS interactions can impose an additional layer of regulation through mediating RGS subcellular localization to compartmentalize RGS activity within a cell, thus highlighting their importance as potential targets to modulate GPCR signaling pathways.


Asunto(s)
Membrana Celular/metabolismo , Modelos Biológicos , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Transducción de Señal/fisiología , Membrana Celular/genética , Estructura Terciaria de Proteína , Proteínas RGS/genética , Receptores Acoplados a Proteínas G/genética , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA