Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
PLoS Pathog ; 18(5): e1010335, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35622876

RESUMEN

Macrophages (MΦ) are increasingly recognized as HIV-1 target cells involved in the pathogenesis and persistence of infection. Paradoxically, in vitro infection assays suggest that virus isolates are mostly T-cell-tropic and rarely MΦ-tropic. The latter are assumed to emerge under CD4+ T-cell paucity in tissues such as the brain or at late stage when the CD4 T-cell count declines. However, assays to qualify HIV-1 tropism use cell-free viral particles and may not fully reflect the conditions of in vivo MΦ infection through cell-to-cell viral transfer. Here, we investigated the capacity of viruses expressing primary envelope glycoproteins (Envs) with CCR5 and/or CXCR4 usage from different stages of infection, including transmitted/founder Envs, to infect MΦ by a cell-free mode and through cell-to-cell transfer from infected CD4+ T cells. The results show that most viruses were unable to enter MΦ as cell-free particles, in agreement with the current view that non-M-tropic viruses inefficiently use CD4 and/or CCR5 or CXCR4 entry receptors on MΦ. In contrast, all viruses could be effectively cell-to-cell transferred to MΦ from infected CD4+ T cells. We further showed that viral transfer proceeded through Env-dependent cell-cell fusion of infected T cells with MΦ targets, leading to the formation of productively infected multinucleated giant cells. Compared to cell-free infection, infected T-cell/MΦ contacts showed enhanced interactions of R5 M- and non-M-tropic Envs with CD4 and CCR5, resulting in a reduced dependence on receptor expression levels on MΦ for viral entry. Altogether, our results show that virus cell-to-cell transfer overcomes the entry block of isolates initially defined as non-macrophage-tropic, indicating that HIV-1 has a more prevalent tropism for MΦ than initially suggested. This sheds light into the role of this route of virus cell-to-cell transfer to MΦ in CD4+ T cell rich tissues for HIV-1 transmission, dissemination and formation of tissue viral reservoirs.


Asunto(s)
Infecciones por VIH , VIH-1 , Antígenos CD4/metabolismo , Linfocitos T CD4-Positivos , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Humanos , Macrófagos/metabolismo , Receptores CCR5/metabolismo , Internalización del Virus
2.
Biophys J ; 122(11): 2112-2124, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-36482718

RESUMEN

In cell membranes, proteins and lipids are organized into submicrometric nanodomains of varying sizes, shapes, and compositions, performing specific functions. Despite their biological importance, the detailed morphology of these nanodomains remains unknown. Not only can they hardly be observed by conventional microscopy due to their small size, but there is no full consensus on the theoretical models to describe their structuring and their shapes. Here, we use a combination of analytical calculations and Monte Carlo simulations based upon a model coupling membrane composition and shape to show that increasing protein concentration leads to an elongation of membrane nanodomains. The results are corroborated by single-particle tracking measurements on HIV receptors, whose level of expression in the membrane of specifically designed living cells can be tuned. These findings highlight that protein abundance can modulate nanodomain shape and potentially their biological function. Beyond biomembranes, this mesopatterning mechanism is of relevance in several soft-matter systems because it relies on generic physical arguments.


Asunto(s)
Microscopía , Imagen Individual de Molécula , Membrana Celular/metabolismo , Microdominios de Membrana/metabolismo
3.
PLoS Pathog ; 17(4): e1009526, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33872329

RESUMEN

HIV-1 infects CD4 T lymphocytes (CD4TL) through binding the chemokine receptors CCR5 or CXCR4. CXCR4-using viruses are considered more pathogenic, linked to accelerated depletion of CD4TL and progression to AIDS. However, counterexamples to this paradigm are common, suggesting heterogeneity in the virulence of CXCR4-using viruses. Here, we investigated the role of the CXCR4 chemokine CXCL12 as a driving force behind virus virulence. In vitro, CXCL12 prevents HIV-1 from binding CXCR4 and entering CD4TL, but its role in HIV-1 transmission and propagation remains speculative. Through analysis of thirty envelope glycoproteins (Envs) from patients at different stages of infection, mostly treatment-naïve, we first interrogated whether sensitivity of viruses to inhibition by CXCL12 varies over time in infection. Results show that Envs resistant (RES) to CXCL12 are frequent in patients experiencing low CD4TL levels, most often late in infection, only rarely at the time of primary infection. Sensitivity assays to soluble CD4 or broadly neutralizing antibodies further showed that RES Envs adopt a more closed conformation with distinct antigenicity, compared to CXCL12-sensitive (SENS) Envs. At the level of the host cell, our results suggest that resistance is not due to improved fusion or binding to CD4, but owes to viruses using particular CXCR4 molecules weakly accessible to CXCL12. We finally asked whether the low CD4TL levels in patients are related to increased pathogenicity of RES viruses. Resistance actually provides viruses with an enhanced capacity to enter naive CD4TL when surrounded by CXCL12, which mirrors their situation in lymphoid organs, and to deplete bystander activated effector memory cells. Therefore, RES viruses seem more likely to deregulate CD4TL homeostasis. This work improves our understanding of the pathophysiology and the transmission of HIV-1 and suggests that RES viruses' receptors could represent new therapeutic targets to help prevent CD4TL depletion in HIV+ patients on cART.


Asunto(s)
Antivirales/metabolismo , Quimiocina CXCL12/metabolismo , Infecciones por VIH/virología , VIH-1/patogenicidad , Receptores CXCR4/metabolismo , Linfocitos T CD4-Positivos/virología , Infecciones por VIH/fisiopatología , Infecciones por VIH/transmisión , VIH-1/fisiología , Homeostasis , Humanos , Proteínas del Envoltorio Viral/metabolismo , Virulencia
4.
Molecules ; 28(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36770826

RESUMEN

The chemokine receptor CXCR4 and its ligand CXCL12 regulate leukocyte trafficking, homeostasis and functions and are potential therapeutic targets in many diseases such as HIV-1 infection and cancers. Here, we identified new CXCR4 ligands in the CERMN chemical library using a FRET-based high-throughput screening assay. These are bis-imidazoline compounds comprising two imidazole rings linked by an alkyl chain. The molecules displace CXCL12 binding with submicromolar potencies, similarly to AMD3100, the only marketed CXCR4 ligand. They also inhibit anti-CXCR4 mAb 12G5 binding, CXCL12-mediated chemotaxis and HIV-1 infection. Further studies with newly synthesized derivatives pointed out to a role of alkyl chain length on the bis-imidazoline properties, with molecules with an even number of carbons equal to 8, 10 or 12 being the most potent. Interestingly, these differ in the functions of CXCR4 that they influence. Site-directed mutagenesis and molecular docking predict that the alkyl chain folds in such a way that the two imidazole groups become lodged in the transmembrane binding cavity of CXCR4. Results also suggest that the alkyl chain length influences how the imidazole rings positions in the cavity. These results may provide a basis for the design of new CXCR4 antagonists targeting specific functions of the receptor.


Asunto(s)
Imidazolinas , Transducción de Señal , Ligandos , Simulación del Acoplamiento Molecular , Receptores CXCR4 , Imidazoles/farmacología
5.
PLoS Pathog ; 14(12): e1007432, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30521629

RESUMEN

CCR5 plays immune functions and is the coreceptor for R5 HIV-1 strains. It exists in diverse conformations and oligomerization states. We interrogated the significance of the CCR5 structural diversity on HIV-1 infection. We show that envelope glycoproteins (gp120s) from different HIV-1 strains exhibit divergent binding levels to CCR5 on cell lines and primary cells, but not to CD4 or the CD4i monoclonal antibody E51. This owed to differential binding of the gp120s to different CCR5 populations, which exist in varying quantities at the cell surface and are differentially expressed between different cell types. Some, but not all, of these populations are antigenically distinct conformations of the coreceptor. The different binding levels of gp120s also correspond to differences in their capacity to bind CCR5 dimers/oligomers. Mutating the CCR5 dimerization interface changed conformation of the CCR5 homodimers and modulated differentially the binding of distinct gp120s. Env-pseudotyped viruses also use particular CCR5 conformations for entry, which may differ between different viruses and represent a subset of those binding gp120s. In particular, even if gp120s can bind both CCR5 monomers and oligomers, impairment of CCR5 oligomerization improved viral entry, suggesting that HIV-1 prefers monomers for entry. From a functional standpoint, we illustrate that the nature of the CCR5 molecules to which gp120/HIV-1 binds shapes sensitivity to inhibition by CCR5 ligands and cellular tropism. Differences exist in the CCR5 populations between T-cells and macrophages, and this is associated with differential capacity to bind gp120s and to support viral entry. In macrophages, CCR5 structural plasticity is critical for entry of blood-derived R5 isolates, which, in contrast to prototypical M-tropic strains from brain tissues, cannot benefit from enhanced affinity for CD4. Collectively, our results support a role for CCR5 heterogeneity in diversifying the phenotypic properties of HIV-1 isolates and provide new clues for development of CCR5-targeting drugs.


Asunto(s)
Infecciones por VIH/metabolismo , VIH-1/fisiología , Receptores CCR5/química , Receptores CCR5/metabolismo , Internalización del Virus , Proteína gp120 de Envoltorio del VIH/metabolismo , Humanos , Fenotipo , Unión Proteica
6.
Retrovirology ; 13(1): 50, 2016 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-27473399

RESUMEN

BACKGROUND: Covariation is an essential process that leads to coevolution of parts of proteins and genomes. In organisms subject to strong selective pressure, coevolution is central to keep the balance between the opposite requirements of antigenic variation and retention of functionality. Being the viral component most exposed to the external environment, the HIV-1 glycoprotein gp120 constitutes the main target of the immune response. Accordingly its more external portions are characterised by extensive sequence heterogeneity fostering constant antigenic variation. RESULTS: We report that a single polymorphism, present at the level of the viral population in the conserved internal region C2, was sufficient to totally abolish Env functionality when introduced in an exogenous genetic context. The prominent defect of the non-functional protein is a block occurring after recognition of the co-receptor CCR5, likely due to an interference with the subsequent conformational changes that lead to membrane fusion. We also report that the presence of compensatory polymorphisms at the level of the external and hypervariable region V3 fully restored the functionality of the protein. The functional revertant presents different antigenic profiles and sensitivity to the entry inhibitor TAK 779. CONCLUSIONS: Our data suggest that variable regions, besides harbouring intrinsic extensive antigenic diversity, can also contribute to sequence diversification in more structurally constrained parts of the gp120 by buffering the deleterious effect of polymorphisms, further increasing the genetic flexibility of the protein and the antigenic repertoire of the viral population.


Asunto(s)
Proteína gp120 de Envoltorio del VIH/genética , VIH-1/genética , Polimorfismo Genético , Amidas/farmacología , Variación Antigénica , Antígenos CD4/metabolismo , Evolución Molecular , Variación Genética , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/inmunología , Inhibidores de Fusión de VIH/farmacología , VIH-1/inmunología , VIH-1/fisiología , Humanos , Estabilidad Proteica , Compuestos de Amonio Cuaternario/farmacología , Receptores CCR5/metabolismo , Alineación de Secuencia , Internalización del Virus
7.
Proc Natl Acad Sci U S A ; 110(23): 9475-80, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23696662

RESUMEN

CC chemokine receptor 5 (CCR5) is a receptor for chemokines and the coreceptor for R5 HIV-1 entry into CD4(+) T lymphocytes. Chemokines exert anti-HIV-1 activity in vitro, both by displacing the viral envelope glycoprotein gp120 from binding to CCR5 and by promoting CCR5 endocytosis, suggesting that they play a protective role in HIV infection. However, we showed here that different CCR5 conformations at the cell surface are differentially engaged by chemokines and gp120, making chemokines weaker inhibitors of HIV infection than would be expected from their binding affinity constants for CCR5. These distinct CCR5 conformations rely on CCR5 coupling to nucleotide-free G proteins ((NF)G proteins). Whereas native CCR5 chemokines bind with subnanomolar affinity to (NF)G protein-coupled CCR5, gp120/HIV-1 does not discriminate between (NF)G protein-coupled and uncoupled CCR5. Interestingly, the antiviral activity of chemokines is G protein independent, suggesting that "low-chemokine affinity" (NF)G protein-uncoupled conformations of CCR5 represent a portal for viral entry. Furthermore, chemokines are weak inducers of CCR5 endocytosis, as is revealed by EC50 values for chemokine-mediated endocytosis reflecting their low-affinity constant value for (NF)G protein-uncoupled CCR5. Abolishing CCR5 interaction with (NF)G proteins eliminates high-affinity binding of CCR5 chemokines but preserves receptor endocytosis, indicating that chemokines preferentially endocytose low-affinity receptors. Finally, we evidenced that chemokine analogs achieve highly potent HIV-1 inhibition due to high-affinity interactions with internalizing and/or gp120-binding receptors. These data are consistent with HIV-1 evading chemokine inhibition by exploiting CCR5 conformational heterogeneity, shed light into the inhibitory mechanisms of anti-HIV-1 chemokine analogs, and provide insights for the development of unique anti-HIV molecules.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Infecciones por VIH/fisiopatología , VIH-1/fisiología , Conformación Proteica , Receptores CCR5/química , Internalización del Virus , Línea Celular , Quimiocinas/metabolismo , Endocitosis/fisiología , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Humanos , Ensayo de Unión Radioligante , Receptores CCR5/metabolismo
8.
J Biol Chem ; 289(27): 19042-52, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24855645

RESUMEN

CCR5 binds the chemokines CCL3, CCL4, and CCL5 and is the major coreceptor for HIV-1 entry into target cells. Chemokines are supposed to form a natural barrier against human immunodeficiency virus, type 1 (HIV-1) infection. However, we showed that their antiviral activity is limited by CCR5 adopting low-chemokine affinity conformations at the cell surface. Here, we investigated whether a pool of CCR5 that is not stabilized by chemokines could represent a target for inhibiting HIV infection. We exploited the characteristics of the chemokine analog PSC-RANTES (N-α-(n-nonanoyl)-des-Ser(1)-[l-thioprolyl(2), l-cyclohexylglycyl(3)]-RANTES(4-68)), which displays potent anti-HIV-1 activity. We show that native chemokines fail to prevent high-affinity binding of PSC-RANTES, analog-mediated calcium release (in desensitization assays), and analog-mediated CCR5 internalization. These results indicate that a pool of spare CCR5 may bind PSC-RANTES but not native chemokines. Improved recognition of CCR5 by PSC-RANTES may explain why the analog promotes higher amounts of ß-arrestin 2·CCR5 complexes, thereby increasing CCR5 down-regulation and HIV-1 inhibition. Together, these results highlight that spare CCR5, which might permit HIV-1 to escape from chemokines, should be targeted for efficient viral blockade.


Asunto(s)
Fármacos Anti-VIH/farmacología , Quimiocina CCL5/farmacología , VIH-1/efectos de los fármacos , VIH-1/fisiología , Receptores CCR5/metabolismo , Internalización del Virus/efectos de los fármacos , Arrestinas/metabolismo , Células HEK293 , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Transducción de Señal/efectos de los fármacos , Arrestina beta 2 , beta-Arrestinas
9.
Retrovirology ; 12: 50, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26081316

RESUMEN

BACKGROUND: Maraviroc (MVC) is an allosteric CCR5 inhibitor used against HIV-1 infection. While MVC-resistant viruses have been identified in patients, it still remains incompletely known how they adjust their CD4 and CCR5 binding properties to resist MVC inhibition while preserving their replicative capacity. It is thought that they maintain high efficiency of receptor binding. To date however, information about the binding affinities to receptors for inhibitor-resistant HIV-1 remains limited. RESULTS: Here, we show by means of viral envelope (gp120) binding experiments and virus-cell fusion kinetics that a MVC-resistant virus (MVC-Res) that had emerged as a dominant viral quasispecies in a patient displays reduced affinities for CD4 and CCR5 either free or bound to MVC, as compared to its MVC-sensitive counterpart isolated before MVC therapy. An alanine insertion within the GPG motif (G310_P311insA) of the MVC-resistant gp120 V3 loop is responsible for the decreased CCR5 binding affinity, while impaired binding to CD4 is due to sequence changes outside V3. Molecular dynamics simulations of gp120 binding to CCR5 further emphasize that the Ala insertion alters the structure of the V3 tip and weakens interaction with CCR5 ECL2. Paradoxically, infection experiments on cells expressing high levels of CCR5 also showed that Ala allows MVC-Res to use CCR5 efficiently, thereby improving viral fusion and replication efficiencies. Actually, although we found that the V3 loop of MVC-Res is required for high levels of MVC resistance, other regions outside V3 are sufficient to confer a moderate level of resistance. These sequence changes outside V3, however, come with a replication cost, which is compensated for by the Ala insertion in V3. CONCLUSION: These results indicate that changes in the V3 loop of MVC-resistant viruses can augment the efficiency of CCR5-dependent steps of viral entry other than gp120 binding, thereby compensating for their decreased affinity for entry receptors and improving their fusion and replication efficiencies. This study thus sheds light on unsuspected mechanisms whereby MVC-resistant HIV-1 could emerge and grow in treated patients.


Asunto(s)
Fármacos Anti-VIH/farmacología , Ciclohexanos/farmacología , Farmacorresistencia Viral , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/efectos de los fármacos , Mutación Missense , Receptores CCR5/metabolismo , Triazoles/farmacología , Proteína gp120 de Envoltorio del VIH/genética , VIH-1/genética , Humanos , Maraviroc , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Receptores del VIH/metabolismo , Internalización del Virus , Replicación Viral
10.
J Virol ; 86(18): 10218-20, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22787219

RESUMEN

CCR5 is the major HIV-1 entry coreceptor. RANTES/CCL5 analogs are more potent inhibitors of infection than native chemokines; one class activates and internalizes CCR5, one neither activates nor internalizes, and a third partially internalizes without activation. Here we show that mutations in CCR5 transmembrane domains differentially impact the activity of these three inhibitor classes, suggesting that the transmembrane region of CCR5, a key interaction site for inhibitors, is a sensitive molecular switch, modulating receptor activity.


Asunto(s)
Quimiocina CCL5/fisiología , Mutación , Receptores CCR5/genética , Receptores CCR5/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Fármacos Anti-VIH/farmacología , Línea Celular , Quimiocina CCL5/agonistas , Quimiocina CCL5/antagonistas & inhibidores , Quimiocina CCL5/genética , VIH-1/patogenicidad , VIH-1/fisiología , Interacciones Huésped-Patógeno , Humanos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Receptores CCR5/química , Transducción de Señal , Internalización del Virus/efectos de los fármacos
11.
Drug Discov Today Technol ; 10(2): e297-305, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24050281

RESUMEN

Maraviroc is a non-peptidic, low molecular weight CC chemokine receptor 5 (CCR5) ligand that has recently been marketed for the treatment of HIV infected individuals. This review discusses recent molecular modeling studies of CCR5 by homology to CXC chemokine receptor 4, their contribution to the understanding of the allosteric mode of action of the inhibitor and their potential for the development of future drugs with improved efficiency and preservation of CCR5 biological functions.


Asunto(s)
Ciclohexanos/farmacología , Inhibidores de Fusión de VIH/farmacología , Modelos Moleculares , Receptores CCR5/metabolismo , Triazoles/farmacología , Regulación Alostérica , Animales , Humanos , Maraviroc , Conformación Proteica , Receptores CCR5/química
12.
Sci Adv ; 9(27): eadf8251, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37406129

RESUMEN

Semen is an important vector for sexual HIV-1 transmission. Although CXCR4-tropic (X4) HIV-1 may be present in semen, almost exclusively CCR5-tropic (R5) HIV-1 causes systemic infection after sexual intercourse. To identify factors that may limit sexual X4-HIV-1 transmission, we generated a seminal fluid-derived compound library and screened it for antiviral agents. We identified four adjacent fractions that blocked X4-HIV-1 but not R5-HIV-1 and found that they all contained spermine and spermidine, abundant polyamines in semen. We showed that spermine, which is present in semen at concentrations up to 14 mM, binds CXCR4 and selectively inhibits cell-free and cell-associated X4-HIV-1 infection of cell lines and primary target cells at micromolar concentrations. Our findings suggest that seminal spermine restricts sexual X4-HIV-1 transmission.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Espermidina/farmacología , Espermina/farmacología , Infecciones por VIH/tratamiento farmacológico , Línea Celular , Receptores CXCR4
13.
J Cell Biol ; 222(5)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36988579

RESUMEN

Macrophages are essential for HIV-1 pathogenesis and represent major viral reservoirs. Therefore, it is critical to understand macrophage infection, especially in tissue macrophages, which are widely infected in vivo, but poorly permissive to cell-free infection. Although cell-to-cell transmission of HIV-1 is a determinant mode of macrophage infection in vivo, how HIV-1 transfers toward macrophages remains elusive. Here, we demonstrate that fusion of infected CD4+ T lymphocytes with human macrophages leads to their efficient and productive infection. Importantly, several tissue macrophage populations undergo this heterotypic cell fusion, including synovial, placental, lung alveolar, and tonsil macrophages. We also find that this mode of infection is modulated by the macrophage polarization state. This fusion process engages a specific short-lived adhesion structure and is controlled by the CD81 tetraspanin, which activates RhoA/ROCK-dependent actomyosin contractility in macrophages. Our study provides important insights into the mechanisms underlying infection of tissue-resident macrophages, and establishment of persistent cellular reservoirs in patients.


Asunto(s)
Linfocitos T CD4-Positivos , Fusión Celular , Infecciones por VIH , Macrófagos , Humanos , Linfocitos T CD4-Positivos/metabolismo , Infecciones por VIH/metabolismo , VIH-1/patogenicidad , Macrófagos/metabolismo , Macrófagos/virología , Actomiosina/metabolismo
14.
J Biol Chem ; 286(38): 33409-21, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21775441

RESUMEN

Maraviroc is a nonpeptidic small molecule human immunodeficiency virus type 1 (HIV-1) entry inhibitor that has just entered the therapeutic arsenal for the treatment of patients. We recently demonstrated that maraviroc binding to the HIV-1 coreceptor, CC chemokine receptor 5 (CCR5), prevents it from binding the chemokine CCL3 and the viral envelope glycoprotein gp120 by an allosteric mechanism. However, incomplete knowledge of ligand-binding sites and the lack of CCR5 crystal structures have hampered an in-depth molecular understanding of how the inhibitor works. Here, we addressed these issues by combining site-directed mutagenesis (SDM) with homology modeling and docking. Six crystal structures of G-protein-coupled receptors were compared for their suitability for CCR5 modeling. All CCR5 models had equally good geometry, but that built from the recently reported dimeric structure of the other HIV-1 coreceptor CXCR4 bound to the peptide CVX15 (Protein Data Bank code 3OE0) best agreed with the SDM data and discriminated CCR5 from non-CCR5 binders in a virtual screening approach. SDM and automated docking predicted that maraviroc inserts deeply in CCR5 transmembrane cavity where it can occupy three different binding sites, whereas CCL3 and gp120 lie on distinct yet overlapped regions of the CCR5 extracellular loop 2. Data suggesting that the transmembrane cavity remains accessible for maraviroc in CCL3-bound and gp120-bound CCR5 help explain our previous observation that the inhibitor enhances dissociation of preformed ligand-CCR5 complexes. Finally, we identified residues in the predicted CCR5 dimer interface that are mandatory for gp120 binding, suggesting that receptor dimerization might represent a target for new CCR5 entry inhibitors.


Asunto(s)
Ciclohexanos/metabolismo , Modelos Biológicos , Receptores CCR5/metabolismo , Triazoles/metabolismo , Regulación Alostérica/efectos de los fármacos , Secuencia de Aminoácidos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cristalografía por Rayos X , Ciclohexanos/química , Humanos , Maraviroc , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Receptores CCR5/química , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/farmacología , Triazoles/química , Interfaz Usuario-Computador
15.
J Biol Chem ; 286(7): 4978-90, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21118814

RESUMEN

CC chemokine receptor 5 (CCR5) is a G-protein-coupled receptor for the chemokines CCL3, -4, and -5 and a coreceptor for entry of R5-tropic strains of human immunodeficiency virus type 1 (HIV-1) into CD4(+) T-cells. We investigated the mechanisms whereby nonpeptidic, low molecular weight CCR5 ligands block HIV-1 entry and infection. Displacement binding assays and dissociation kinetics demonstrated that two of these molecules, i.e. TAK779 and maraviroc (MVC), inhibit CCL3 and the HIV-1 envelope glycoprotein gp120 binding to CCR5 by a noncompetitive and allosteric mechanism, supporting the view that they bind to regions of CCR5 distinct from the gp120- and CCL3-binding sites. We observed that TAK779 and MVC are full and weak inverse agonists for CCR5, respectively, indicating that they stabilize distinct CCR5 conformations with impaired abilities to activate G-proteins. Dissociation of [(125)I]CCL3 from CCR5 was accelerated by TAK779, to a lesser extent by MVC, and by GTP analogs, suggesting that inverse agonism contributes to allosteric inhibition of the chemokine binding to CCR5. TAK779 and MVC also promote dissociation of [(35)S]gp120 from CCR5 with an efficiency that correlates with their ability to act as inverse agonists. Displacement experiments revealed that affinities of MVC and TAK779 for the [(35)S]gp120-binding receptors are in the same range (IC(50) ∼6.4 versus 22 nm), although we found that MVC is 100-fold more potent than TAK779 for inhibiting HIV infection. This suggests that allosteric CCR5 inhibitors not only act by blocking gp120 binding but also alter distinct steps of CCR5 usage in the course of HIV infection.


Asunto(s)
Ciclohexanos/farmacología , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Receptores CCR5/metabolismo , Triazoles/farmacología , Regulación Alostérica/efectos de los fármacos , Quimiocina CCL3/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/farmacología , Células HEK293 , Proteína gp120 de Envoltorio del VIH/antagonistas & inhibidores , Infecciones por VIH/tratamiento farmacológico , Humanos , Ligandos , Maraviroc , Unión Proteica/efectos de los fármacos , Receptores CCR5/agonistas
16.
Elife ; 112022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35866628

RESUMEN

G-protein-coupled receptors (GPCR) are present at the cell surface in different conformational and oligomeric states. However, how these states impact GPCRs biological function and therapeutic targeting remains incompletely known. Here, we investigated this issue in living cells for the CC chemokine receptor 5 (CCR5), a major receptor in inflammation and the principal entry co-receptor for Human Immunodeficiency Viruses type 1 (HIV-1). We used TIRF microscopy and a statistical method to track and classify the motion of different receptor subpopulations. We showed a diversity of ligand-free forms of CCR5 at the cell surface constituted of various oligomeric states and exhibiting transient Brownian and restricted motions. These forms were stabilized differently by distinct ligands. In particular, agonist stimulation restricted the mobility of CCR5 and led to its clustering, a feature depending on ß-arrestin, while inverse agonist stimulation exhibited the opposite effect. These results suggest a link between receptor activation and immobilization. Applied to HIV-1 envelope glycoproteins gp120, our quantitative analysis revealed agonist-like properties of gp120s. Distinct gp120s influenced CCR5 dynamics differently, suggesting that they stabilize different CCR5 conformations. Then, using a dimerization-compromized mutant, we showed that dimerization (i) impacts CCR5 precoupling to G proteins, (ii) is a pre-requisite for the immobilization and clustering of receptors upon activation, and (iii) regulates receptor endocytosis, thereby impacting the fate of activated receptors. This study demonstrates that tracking the dynamic behavior of a GPCR is an efficient way to link GPCR conformations to their functions, therefore improving the development of drugs targeting specific receptor conformations.


Asunto(s)
VIH-1 , Receptores CCR5 , Membrana Celular/metabolismo , VIH-1/fisiología , Humanos , Ligandos , Multimerización de Proteína , Receptores CCR5/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
17.
J Clin Invest ; 118(3): 1074-84, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18274673

RESUMEN

Leukocytes from individuals with warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome, a rare immunodeficiency, and bearing a wild-type CXCR4 ORF (WHIM(WT)) display impaired CXCR4 internalization and desensitization upon exposure to CXCL12. The resulting enhanced CXCR4-dependent responses, including chemotaxis, probably impair leukocyte trafficking and account for the immunohematologic clinical manifestations of WHIM syndrome. We provided here evidence that GPCR kinase-3 (GRK3) specifically regulates CXCL12-promoted internalization and desensitization of CXCR4. GRK3-silenced control cells displayed altered CXCR4 attenuation and enhanced chemotaxis, as did WHIM(WT) cells. These findings identified GRK3 as a negative regulator of CXCL12-induced chemotaxis and as a candidate responsible for CXCR4 dysfunction in WHIM(WT) leukocytes. Consistent with this, we showed that GRK3 overexpression in both leukocytes and skin fibroblasts from 2 unrelated WHIM(WT) patients restored CXCL12-induced internalization and desensitization of CXCR4 and normalized chemotaxis. Moreover, we found in cells derived from one patient a profound and selective decrease in GRK3 products that probably resulted from defective mRNA synthesis. Taken together, these results have revealed a pivotal role for GRK3 in regulating CXCR4 attenuation and have provided a mechanistic link between the GRK3 pathway and the CXCR4-related WHIM(WT) disorder.


Asunto(s)
Quinasa 3 del Receptor Acoplado a Proteína-G/fisiología , Enfermedades Genéticas Congénitas/sangre , Síndromes de Inmunodeficiencia/metabolismo , Leucocitos/metabolismo , Receptores CXCR4/fisiología , Transducción de Señal/fisiología , Agammaglobulinemia/metabolismo , Arrestinas/fisiología , Infecciones Bacterianas/metabolismo , Movimiento Celular , Quimiocina CXCL12/fisiología , Quinasa 3 del Receptor Acoplado a Proteína-G/genética , Humanos , Neutropenia/metabolismo , ARN Mensajero/análisis , Síndrome , Verrugas/metabolismo , beta-Arrestinas
18.
Blood ; 113(24): 6085-93, 2009 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-19380869

RESUMEN

The stromal cell-derived factor-1/CXCL12 chemokine engages the CXCR4 and CXCR7 receptors and regulates homeostatic and pathologic processes, including organogenesis, leukocyte homeostasis, and tumorigenesis. Both receptors are widely expressed in mammalian cells, but how they cooperate to respond to CXCL12 is not well understood. Here, we show that CXCR7 per se does not trigger G(alphai) protein-dependent signaling, although energy transfer assays indicate that it constitutively interacts with G(alphai) proteins and undergoes CXCL12-mediated conformational changes. Moreover, when CXCR4 and CXCR7 are coexpressed, we show that receptor heterodimers form as efficiently as receptor homodimers, thus opening the possibility that CXCR4/CXCR7 heterodimer formation has consequences on CXCL12-mediated signals. Indeed, expression of CXCR7 induces conformational rearrangements within preassembled CXCR4/G(alphai) protein complexes and impairs CXCR4-promoted G(alphai)-protein activation and calcium responses. Varying CXCR7 expression levels and blocking CXCL12/CXCR7 interactions in primary T cells suggest that CXCR4/CXCR7 heterodimers form in primary lymphocytes and regulate CXCL12-promoted chemotaxis. Taken together, these results identify CXCR4/CXCR7 heterodimers as distinct functional units with novel properties, which can contribute to the functional plasticity of CXCL12.


Asunto(s)
Quimiocina CXCL12/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Multimerización de Proteína , Receptores CXCR4/metabolismo , Receptores CXCR/metabolismo , Animales , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Citometría de Flujo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Humanos , Riñón/metabolismo , Transducción de Señal , Linfocitos T/metabolismo
19.
Viruses ; 13(7)2021 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-34372601

RESUMEN

The chemokine receptor CCR5 is a key player in HIV-1 infection. The cryo-EM 3D structure of HIV-1 envelope glycoprotein (Env) subunit gp120 in complex with CD4 and CCR5 has provided important structural insights into HIV-1/host cell interaction, yet it has not explained the signaling properties of Env nor the fact that CCR5 exists in distinct forms that show distinct Env binding properties. We used classical molecular dynamics and site-directed mutagenesis to characterize the CCR5 conformations stabilized by four gp120s, from laboratory-adapted and primary HIV-1 strains, and which were previously shown to bind differentially to distinct CCR5 forms and to exhibit distinct cellular tropisms. The comparative analysis of the simulated structures reveals that the different gp120s do indeed stabilize CCR5 in different conformational ensembles. They differentially reorient extracellular loops 2 and 3 of CCR5 and thus accessibility to the transmembrane binding cavity. They also reshape this cavity differently and give rise to different positions of intracellular ends of transmembrane helices 5, 6 and 7 of the receptor and of its third intracellular loop, which may in turn influence the G protein binding region differently. These results suggest that the binding of gp120s to CCR5 may have different functional outcomes, which could result in different properties for viruses.


Asunto(s)
Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/fisiología , Receptores CCR5/química , Receptores CCR5/metabolismo , Línea Celular , Proteína gp120 de Envoltorio del VIH/clasificación , Proteína gp120 de Envoltorio del VIH/genética , VIH-1/química , Humanos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Receptores CCR5/genética , Tropismo Viral
20.
Blood ; 112(1): 34-44, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18436740

RESUMEN

WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome is an immune deficiency linked in many cases to heterozygous mutations causing truncations in the cytoplasmic tail of CXC chemokine receptor 4 (CXCR4). Leukocytes expressing truncated CXCR4 display enhanced responses to the receptor ligand CXCL12, including chemotaxis, which likely impair their trafficking and contribute to the immunohematologic clinical manifestations of the syndrome. CXCR4 desensitization and endocytosis are dependent on beta-arrestin (betaarr) recruitment to the cytoplasmic tail, so that the truncated CXCR4 are refractory to these processes and so have enhanced G protein-dependent signaling. Here, we show that the augmented responsiveness of WHIM leukocytes is also accounted for by enhanced betaarr2-dependent signaling downstream of the truncated CXCR4 receptor. Indeed, the WHIM-associated receptor CXCR4(1013) maintains association with betaarr2 and triggers augmented and prolonged betaarr2-dependent signaling, as revealed by ERK1/2 phosphorylation kinetics. Evidence is also provided that CXCR4(1013)-mediated chemotaxis critically requires betaarr2, and disrupting the SHSK motif in the third intracellular loop of CXCR4(1013) abrogates betaarr2-mediated signaling, but not coupling to G proteins, and normalizes chemotaxis. We also demonstrate that CXCR4(1013) spontaneously forms heterodimers with wild-type CXCR4. Accordingly, we propose a model where enhanced functional interactions between betaarr2 and receptor dimers account for the altered responsiveness of WHIM leukocytes to CXCL12.


Asunto(s)
Arrestinas/metabolismo , Quimiocina CXCL12/farmacología , Síndromes de Inmunodeficiencia/inmunología , Síndromes de Inmunodeficiencia/metabolismo , Receptores CXCR4/química , Agammaglobulinemia/genética , Agammaglobulinemia/inmunología , Agammaglobulinemia/metabolismo , Secuencias de Aminoácidos , Línea Celular , Quimiotaxis de Leucocito , Dimerización , Humanos , Síndromes de Inmunodeficiencia/genética , Infecciones/genética , Infecciones/inmunología , Infecciones/metabolismo , Mutación , Neutropenia/genética , Neutropenia/inmunología , Neutropenia/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transducción de Señal , Verrugas/genética , Verrugas/inmunología , Verrugas/metabolismo , beta-Arrestinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA