Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Genome Biol ; 25(1): 143, 2024 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822412

RESUMEN

BACKGROUND: Targeted therapies exploiting vulnerabilities of cancer cells hold promise for improving patient outcome and reducing side-effects of chemotherapy. However, efficacy of precision therapies is limited in part because of tumor cell heterogeneity. A better mechanistic understanding of how drug effect is linked to cancer cell state diversity is crucial for identifying effective combination therapies that can prevent disease recurrence. RESULTS: Here, we characterize the effect of G2/M checkpoint inhibition in acute lymphoblastic leukemia (ALL) and demonstrate that WEE1 targeted therapy impinges on cell fate decision regulatory circuits. We find the highest inhibition of recovery of proliferation in ALL cells with KMT2A-rearrangements. Single-cell RNA-seq and ATAC-seq of RS4;11 cells harboring KMT2A::AFF1, treated with the WEE1 inhibitor AZD1775, reveal diversification of cell states, with a fraction of cells exhibiting strong activation of p53-driven processes linked to apoptosis and senescence, and disruption of a core KMT2A-RUNX1-MYC regulatory network. In this cell state diversification induced by WEE1 inhibition, a subpopulation transitions to a drug tolerant cell state characterized by activation of transcription factors regulating pre-B cell fate, lipid metabolism, and pre-BCR signaling in a reversible manner. Sequential treatment with BCR-signaling inhibitors dasatinib, ibrutinib, or perturbing metabolism by fatostatin or AZD2014 effectively counteracts drug tolerance by inducing cell death and repressing stemness markers. CONCLUSIONS: Collectively, our findings provide new insights into the tight connectivity of gene regulatory programs associated with cell cycle and cell fate regulation, and a rationale for sequential administration of WEE1 inhibitors with low toxicity inhibitors of pre-BCR signaling or metabolism.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , N-Metiltransferasa de Histona-Lisina/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Pirimidinonas/farmacología , Pirimidinonas/uso terapéutico , Proteína de la Leucemia Mieloide-Linfoide/genética , Pirazoles/farmacología , Pirazoles/uso terapéutico , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ciclo Celular/efectos de los fármacos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética
2.
Blood Adv ; 8(11): 2846-2860, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38598725

RESUMEN

ABSTRACT: The t(1;19) translocation, encoding the oncogenic fusion protein E2A (TCF3)-PBX1, is involved in acute lymphoblastic leukemia (ALL) and associated with a pre-B-cell receptor (preBCR+) phenotype. Relapse in patients with E2A-PBX1+ ALL frequently occurs in the central nervous system (CNS). Therefore, there is a medical need for the identification of CNS active regimens for the treatment of E2A-PBX1+/preBCR+ ALL. Using unbiased short hairpin RNA (shRNA) library screening approaches, we identified Bruton tyrosine kinase (BTK) as a key gene involved in both proliferation and dasatinib sensitivity of E2A-PBX1+/preBCR+ ALL. Depletion of BTK by shRNAs resulted in decreased proliferation of dasatinib-treated E2A-PBX1+/preBCR+ cells compared with control-transduced cells. Moreover, the combination of dasatinib with BTK inhibitors (BTKi; ibrutinib, acalabrutinib, or zanubrutinib) significantly decreased E2A-PBX1+/preBCR+ human and murine cell proliferation, reduced phospholipase C gamma 2 (PLCG2) and BTK phosphorylation and total protein levels and increased disease-free survival of mice in secondary transplantation assays, particularly reducing CNS-leukemic infiltration. Hence, dasatinib with ibrutinib reduced pPLCG2 and pBTK in primary ALL patient samples, including E2A-PBX1+ ALLs. In summary, genetic depletion and pharmacological inhibition of BTK increase dasatinib effects in human and mouse with E2A-PBX1+/preBCR+ ALL across most of performed assays, with the combination of dasatinib and BTKi proving effective in reducing CNS infiltration of E2A-PBX1+/preBCR+ ALL cells in vivo.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Dasatinib , Inhibidores de Proteínas Quinasas , Dasatinib/uso terapéutico , Dasatinib/farmacología , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/metabolismo , Humanos , Animales , Ratones , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos
3.
Cell Genom ; 3(3): 100276, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36950387

RESUMEN

In contrast to mono- or biallelic loss of tumor-suppressor function, effects of discrete gene dysregulations, as caused by non-coding (epi)genome alterations, are poorly understood. Here, by perturbing the regulatory genome in mice, we uncover pervasive roles of subtle gene expression variation in cancer evolution. Genome-wide screens characterizing 1,450 tumors revealed that such quasi-insufficiency is extensive across entities and displays diverse context dependencies, such as distinct cell-of-origin associations in T-ALL subtypes. We compile catalogs of non-coding regions linked to quasi-insufficiency, show their enrichment with human cancer risk variants, and provide functional insights by engineering regulatory alterations in mice. As such, kilo-/megabase deletions in a Bcl11b-linked non-coding region triggered aggressive malignancies, with allele-specific tumor spectra reflecting gradual gene dysregulations through modular and cell-type-specific enhancer activities. Our study constitutes a first survey toward a systems-level understanding of quasi-insufficiency in cancer and gives multifaceted insights into tumor evolution and the tissue-specific effects of non-coding mutations.

4.
Leuk Lymphoma ; 61(13): 3089-3100, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32835548

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is a hematological malignancy driven by abnormal activity of transcription factors. Here we report an aberrant expression of the developmental transcription factor SIX6 in the TAL1-subtype of T-ALL. Our results demonstrate that the binding of TAL1 and GATA3 transcription factors into an upstream enhancer element directly regulates SIX6 expression. High expression of SIX6 was associated with inferior event-free survival within three independent patient cohorts. At a functional level, CRISPR-Cas9-mediated knockout of the SIX6 gene in TAL1 positive Jurkat cells induced changes in genes associated with the mTOR-, K-RAS-, and TNFα-related molecular signatures but did not impair cell proliferation or viability. There was also no acceleration of T-ALL development within a Myc driven zebrafish tumor model in vivo. Taken together, our results show that SIX6 belongs to the TAL1 regulatory gene network in T-ALL but is alone insufficient to influence the development or maintenance of T-ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular Tumoral , Proteínas de Homeodominio , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogénicas/genética , Proteína 1 de la Leucemia Linfocítica T Aguda , Transactivadores , Pez Cebra/genética
5.
Genome Med ; 12(1): 99, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33218352

RESUMEN

BACKGROUND: Tight regulatory loops orchestrate commitment to B cell fate within bone marrow. Genetic lesions in this gene regulatory network underlie the emergence of the most common childhood cancer, acute lymphoblastic leukemia (ALL). The initial genetic hits, including the common translocation that fuses ETV6 and RUNX1 genes, lead to arrested cell differentiation. Here, we aimed to characterize transcription factor activities along the B-lineage differentiation trajectory as a reference to characterize the aberrant cell states present in leukemic bone marrow, and to identify those transcription factors that maintain cancer-specific cell states for more precise therapeutic intervention. METHODS: We compared normal B-lineage differentiation and in vivo leukemic cell states using single cell RNA-sequencing (scRNA-seq) and several complementary genomics profiles. Based on statistical tools for scRNA-seq, we benchmarked a workflow to resolve transcription factor activities and gene expression distribution changes in healthy bone marrow lymphoid cell states. We compared these to ALL bone marrow at diagnosis and in vivo during chemotherapy, focusing on leukemias carrying the ETV6-RUNX1 fusion. RESULTS: We show that lymphoid cell transcription factor activities uncovered from bone marrow scRNA-seq have high correspondence with independent ATAC- and ChIP-seq data. Using this comprehensive reference for regulatory factors coordinating B-lineage differentiation, our analysis of ETV6-RUNX1-positive ALL cases revealed elevated activity of multiple ETS-transcription factors in leukemic cells states, including the leukemia genome-wide association study hit ELK3. The accompanying gene expression changes associated with natural killer cell inactivation and depletion in the leukemic immune microenvironment. Moreover, our results suggest that the abundance of G1 cell cycle state at diagnosis and lack of differentiation-associated regulatory network changes during induction chemotherapy represent features of chemoresistance. To target the leukemic regulatory program and thereby overcome treatment resistance, we show that inhibition of ETS-transcription factors reduced cell viability and resolved pathways contributing to this using scRNA-seq. CONCLUSIONS: Our data provide a detailed picture of the transcription factor activities characterizing both normal B-lineage differentiation and those acquired in leukemic bone marrow and provide a rational basis for new treatment strategies targeting the immune microenvironment and the active regulatory network in leukemia.


Asunto(s)
Diferenciación Celular/genética , Proliferación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Leucemia/genética , Linfocitos/fisiología , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Médula Ósea , Línea Celular Tumoral , Niño , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Sistemas de Liberación de Medicamentos , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Leucemia/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción , Transcriptoma , Translocación Genética , Proteína ETS de Variante de Translocación 6
6.
PLoS One ; 5(9): e12991, 2010 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-20885999

RESUMEN

BACKGROUND: The differentiation of fibroblast-like pre-adipocytes to lipid-loaded adipocytes is regulated by a network of transcription factors, the most prominent one being the nuclear receptor peroxisome proliferator-activated receptor (PPAR) γ. However, many of the other 47 members of the nuclear receptor superfamily have an impact on adipogenesis, which in human cells has not been investigated in detail. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed by quantitative PCR all human nuclear receptors at multiple time points during differentiation of SGBS pre-adipocytes. The earliest effect was the down-regulation of the genes RARG, PPARD, REV-ERBA, REV-ERBB, VDR and GR followed by the up-regulation of PPARG, LXRA and AR. These observations are supported with data from 3T3-L1 mouse pre-adipocytes and primary human adipocytes. Investigation of the effects of the individual differentiation mix components in short-term treatments and of their omission from the full mix showed that the expression levels of the early-regulated nuclear receptor genes were most affected by the glucocorticoid receptor (GR) ligand cortisol and the phosphodiesterase inhibitor IBMX. Interestingly, the effects of both compounds converged to repress the genes PPARD, REV-ERBA, REV-ERBB, VDR and GR, whereas cortisol and IBMX showed antagonistic interaction for PPARG, LXRA and AR causing a time lag in their up-regulation. We hypothesize that the well-known auto-repression of GR fine-tunes the detected early responses. Consistently, chromatin immunoprecipitation experiments showed that GR association increased on the transcription start sites of the genes RARG, REV-ERBB, VDR and GR. CONCLUSIONS/SIGNIFICANCE: Adipocyte differentiation is a process, in which many members of the nuclear receptor superfamily change their mRNA expression. The actions of cortisol and IBMX converged to repress several nuclear receptors early in differentiation, while up-regulation of other nuclear receptor genes showed a time lag due to antagonisms of the signals. Our results place GR and its ligand cortisol as central regulatory factors controlling early regulatory events in human adipogenesis that precedes the regulation of the later events by PPARG.


Asunto(s)
Adipocitos/metabolismo , Adipogénesis , Perfilación de la Expresión Génica , Receptores Citoplasmáticos y Nucleares/genética , Células 3T3 , Adipocitos/citología , Animales , Diferenciación Celular , Línea Celular , Humanos , Ratones , Familia de Multigenes , Receptores Citoplasmáticos y Nucleares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA