Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Surg Res ; 284: 280-289, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36621258

RESUMEN

INTRODUCTION: Recently, accumulating studies have reported the roles of competitive endogenous RNA (ceRNA) networks in ischemia/reperfusion (I/R) injury in several organs, including the liver, kidney, heart, brain, and intestine. However, the functions and mechanisms of long noncoding RNAs (lncRNAs)-which serve as ceRNA networks in intestinal I/R injury-remain elusive. METHODS: RNA expression data were retrieved from the National Center for Biotechnology Information-Gene Expression Omnibus database. Differentially expressed microRNAs (miRNAs) (miDEGs) were explored between the sham and intestinal I/R injury samples. Next, targeted lncRNAs and messenger RNAs in the database were matched based on miDEGs. Hub ceRNA networks were constructed and visualized via Cytoscape. Intersection analysis was performed to screen mDEGs between two datasets. Finally, the vital nodes of the ceRNA networks were validated by quantitative PCR. RESULTS: A total of 189 miDEGs were identified. Forty miRNAs were found to be associated with 240 predicted target genes from miRWalk 3.0. The ceRNA network was constructed with 10 miRNAs, including the 1700020114Rik/mmu-miR-7a-5p/Klf4 axis. Furthermore, the expression of lncRNA 1700020114Rik (P < 0.05) and messenger RNA Klf4 (P < 0.01) was markedly decreased in mouse models of intestinal I/R injury, whereas the expression level of mmu-miR-7a-5p was significantly increased (P < 0.05). CONCLUSIONS: The results provide novel insights into the molecular mechanism of ceRNA networks in intestinal I/R injury and highlight the potential of the 170002700020114Rik/mmu-miR-7a-5p/Klf4 axis in the prevention and treatment of intestinal I/R injury.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Daño por Reperfusión , Ratones , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Redes Reguladoras de Genes , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , Intestinos , Daño por Reperfusión/genética , Biología Computacional , Isquemia
2.
J Therm Biol ; 113: 103529, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37055134

RESUMEN

Agmatine is an endogenous biogenic amine that exerts various effects on the central nervous system. The hypothalamic preoptic area (POA, thermoregulatory command center) has high agmatine immunoreactivity. In this study, in conscious and anesthetized male rats, agmatine microinjection into the POA induced hyperthermic responses associated with increased heat production and locomotor activity. Intra-POA administration of agmatine increased the locomotor activity, the brown adipose tissue temperature and rectum temperature, and induced shivering as demonstrated by increased neck muscle electromyographic activity. However, intra-POA administration of agmatine almost had no impact on the tail temperature of anesthetized rats. Furthermore, there were regional differences in the response to agmatine in the POA. The most effective sites for the microinjection of agmatine to elicit hyperthermic responses were localized in the medial preoptic area (MPA). Agmatine microinjection into the median preoptic nucleus (MnPO) and lateral preoptic nucleus (LPO) had a minimal effect on the mean core temperature. Analysis of the in vitro discharge activity of POA neurons in brain slices when perfused with agmatine showed that agmatine inhibited most warm-sensitive but not temperature-insensitive neurons in the MPA. However, regardless of thermosensitivity, the majority of MnPO and LPO neurons were not responsive to agmatine. The results demonstrated that agmatine injection into the POA of male rats, especially the MPA, induced hyperthermic responses, which may be associated with increased BAT thermogenesis, shivering and locomotor activity by inhibiting warm-sensitive neurons.


Asunto(s)
Agmatina , Área Preóptica , Ratas , Masculino , Animales , Área Preóptica/fisiología , Agmatina/farmacología , Regulación de la Temperatura Corporal/fisiología , Hipotálamo , Tiritona
3.
J Inflamm Res ; 15: 2397-2411, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35444445

RESUMEN

Purpose: Intestinal ischemia/reperfusion (I/R) injury is an unresolved clinical challenge due to its high prevalence, difficulty in diagnosis, and lack of clinically effective therapeutic agents. Ferroptosis is a novel form of cell-regulated death that has been shown to play a role in various I/R models and has been shown to be immune-related. Further unraveling the molecular mechanisms associated with ferroptosis and immunity in intestinal I/R injury may lead to the discovery of potentially effective drugs. Methods: We obtained differentially expressed mRNAs (DEGs) in mouse intestinal tissues following intestinal I/R injury or sham surgery. Then, we extracted ferroptosis-related DEGs (FRGs) and immune-related DEGs (IRGs) from the DEGs. In addition, we performed functional analysis of FRGs and IRGs. Next, we used transcriptome sequencing from patients with intestinal I/R injury to validate the results. Then, we constructed transcription factors (TFs)-gene networks and gene-drug networks using mouse and human co-expressed FRGs (coFRG) and mouse and human co-expressed IRGs (coIRG). We also analyzed the composition of immune cells to reveal correlations between FRGs signatures and immune cells in the mouse and human gut. Finally, we validated these results through animal experiments. Results: We extracted 61 FRGs and 294 IRGs from mouse samples and performed PPI and functional analyses. We extracted 45 FRGs and 200 IRGs from human samples for validation, and identified 24 coFRGs,100 coIRGs and 6 hub genes (HSPA5, GDF15, TNFAIP3, HMOX1, CXCL2 and IL6) in both. We also predicted potential TF-gene networks for coFRGs and coIRGs, as well as predicted gene-drug pairs for hub genes. In addition, we found that the immune cells were altered in the early stages of intestinal I/R injury and that FRGs were closely associated with immune cells in mice and humans. Finally, we validated the hub genes in mouse samples. Conclusion: In conclusion, we identified ferroptosis and immunity-related genes to predict their correlations in intestinal I/R injury. We also predicated potential TF-genes network and potential therapeutic targets (HSPA5, GDF15, TNFAIP3, HMOX1, CXCL2 and IL6) to provide clues for further investigation of intestinal I/R injury.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA