Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Semin Cell Dev Biol ; 124: 114-126, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34034986

RESUMEN

The process of cancer initiation and development is a dynamic and complex mechanism involving multiple genetic and non-genetic variations. With the development of high throughput techniques like next-generation sequencing, the field of cancer biology extended beyond the protein-coding genes. It brought the functional role of noncoding RNAs into cancer-associated pathways. MicroRNAs (miRNAs) are one such class of noncoding RNAs regulating different cancer development aspects, including progression and metastasis. MicroRNA-1 (miR-1) is a highly conserved miRNA with a functional role in developing skeletal muscle precursor cells and cardiomyocytes and acts as a consistent tumor suppressor gene. In humans, two discrete genes, MIR-1-1 located on 20q13.333 and MIR-1-2 located on 18q11.2 loci encode for a single mature miR-1. Downregulation of miR-1 has been demonstrated in multiple cancers, including lung, breast, liver, prostate, colorectal, pancreatic, medulloblastoma, and gastric cancer. A vast number of studies have shown that miR-1 affects the hallmarks of cancer like proliferation, invasion and metastasis, apoptosis, angiogenesis, chemosensitization, and immune modulation. The potential therapeutic applications of miR-1 in multiple cancer pathways provide a novel platform for developing anticancer therapies. This review focuses on the different antitumorigenic and therapeutic aspects of miR-1, including how it regulates tumor development and associated immunomodulatory functions.


Asunto(s)
MicroARNs , Neoplasias , Apoptosis , Proliferación Celular , Regulación Neoplásica de la Expresión Génica/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/patología , Neovascularización Patológica/genética
2.
Semin Cancer Biol ; 83: 57-76, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33220460

RESUMEN

Small cell lung cancer (SCLC) is a particular subtype of lung cancer with high mortality. Recent advances in understanding SCLC genomics and breakthroughs of immunotherapy have substantially expanded existing knowledge and treatment modalities. However, challenges associated with SCLC remain enigmatic and elusive. Most of the conventional drug discovery approaches targeting altered signaling pathways in SCLC end up in the 'grave-yard of drug discovery', which mandates exploring novel approaches beyond inhibiting cell signaling pathways. Epigenetic modifications have long been documented as the key contributors to the tumorigenesis of almost all types of cancer, including SCLC. The last decade witnessed an exponential increase in our understanding of epigenetic modifications for SCLC. The present review highlights the central role of epigenetic regulations in acquiring neoplastic phenotype, metastasis, aggressiveness, resistance to chemotherapy, and immunotherapeutic approaches of SCLC. Different types of epigenetic modifications (DNA/histone methylation or acetylation) that can serve as predictive biomarkers for prognostication, treatment stratification, neuroendocrine lineage determination, and development of potential SCLC therapies are also discussed. We also review the utility of epigenetic targets/epidrugs in combination with first-line chemotherapy and immunotherapy that are currently under investigation in preclinical and clinical studies. Altogether, the information presents the inclusive landscape of SCLC epigenetics and epidrugs that will help to improve SCLC outcomes.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Metilación de ADN , Epigénesis Genética , Humanos , Inmunoterapia , Neoplasias Pulmonares/patología , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología
3.
Breast Cancer Res ; 25(1): 25, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918912

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) is highly aggressive with an increased metastatic incidence compared to other breast cancer subtypes. However, due to the absence of clinically reliable biomarkers and targeted therapy in TNBC, outcomes are suboptimal. Hence, there is an urgent need to understand biological mechanisms that lead to identifying novel therapeutic targets for managing metastatic TNBC. METHODS: The clinical significance of MUC16 and ELAVL1 or Hu antigen R (HuR) was examined using breast cancer TCGA data. Microarray was performed on MUC16 knockdown and scramble TNBC cells and MUC16-associated genes were identified using RNA immunoprecipitation and metastatic cDNA array. Metastatic properties of MUC16 were evaluated using tail vein experiment. MUC16 and HuR downstream pathways were confirmed by ectopic overexpression of MUC16-carboxyl-terminal (MUC16-Cter), HuR and cMyc as well as HuR inhibitors (MS-444 and CMLD-2) in TNBC cells. RESULTS: MUC16 was highly expressed in TNBC and correlated with its target HuR. Depletion of MUC16 showed decreased invasion, migration, and colony formation abilities of human and mouse TNBC cells. Mice injected with MUC16 depleted cells were less likely to develop lung metastasis (P = 0.001). Notably, MUC16 and HuR were highly expressed in the lung tropic TNBC cells and lung metastases. Mechanistically, we identified cMyc as a HuR target in TNBC using RNA immunoprecipitation and metastatic cDNA array. Furthermore, MUC16 knockdown and pharmacological inhibition of HuR (MS-444 and CMLD-2) in TNBC cells showed a reduction in cMyc expression. MUC16-Cter or HuR overexpression models indicated MUC16/HuR/cMyc axis in TNBC cell migration. CONCLUSIONS: Our study identified MUC16 as a TNBC lung metastasis promoter that acts through HuR/cMyc axis. This study will form the basis of future studies to evaluate the targeting of both MUC16 and HuR in TNBC patients.


Asunto(s)
Neoplasias Pulmonares , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , Neoplasias Pulmonares/patología , ARN , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/genética , Antígeno Ca-125/genética , Antígeno Ca-125/metabolismo , Antígeno Ca-125/uso terapéutico , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo
4.
Mol Cancer ; 22(1): 1, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36597126

RESUMEN

BACKGROUND: Small cell lung cancer (SCLC) is an aggressive lung cancer subtype that is associated with high recurrence and poor prognosis. Due to lack of potential drug targets, SCLC patients have few therapeutic options. MicroRNAs (miRNAs) provide an interesting repertoire of therapeutic molecules; however, the identification of miRNAs regulating SCLC growth and metastasis and their precise regulatory mechanisms are not well understood. METHODS: To identify novel miRNAs regulating SCLC, we performed miRNA-sequencing from donor/patient serum samples and analyzed the bulk RNA-sequencing data from the tumors of SCLC patients. Further, we developed a nanotechnology-based, highly sensitive method to detect microRNA-1 (miR-1, identified miRNA) in patient serum samples and SCLC cell lines. To assess the therapeutic potential of miR-1, we developed various in vitro models, including miR-1 sponge (miR-1Zip) and DOX-On-miR-1 (Tet-ON) inducible stable overexpression systems. Mouse models derived from intracardiac injection of SCLC cells (miR-1Zip and DOX-On-miR-1) were established to delineate the role of miR-1 in SCLC metastasis. In situ hybridization and immunohistochemistry were used to analyze the expression of miR-1 and target proteins (mouse and human tumor specimens), respectively. Dual-luciferase assay was used to validate the target of miR-1, and chromatin immunoprecipitation assay was used to investigate the protein-gene interactions. RESULTS: A consistent downregulation of miR-1 was observed in tumor tissues and serum samples of SCLC patients compared to their matched normal controls, and these results were recapitulated in SCLC cell lines. Gain of function studies of miR-1 in SCLC cell lines showed decreased cell growth and oncogenic signaling, whereas loss of function studies of miR-1 rescued this effect. Intracardiac injection of gain of function of miR-1 SCLC cell lines in the mouse models showed a decrease in distant organ metastasis, whereas loss of function of miR-1 potentiated growth and metastasis. Mechanistic studies revealed that CXCR4 is a direct target of miR-1 in SCLC. Using unbiased transcriptomic analysis, we identified CXCR4/FOXM1/RRM2 as a unique axis that regulates SCLC growth and metastasis. Our results further showed that FOXM1 directly binds to the RRM2 promoter and regulates its activity in SCLC. CONCLUSIONS: Our findings revealed that miR-1 is a critical regulator for decreasing SCLC growth and metastasis. It targets the CXCR4/FOXM1/RRM2 axis and has a high potential for the development of novel SCLC therapies. MicroRNA-1 (miR-1) downregulation in the tumor tissues and serum samples of SCLC patients is an important hallmark of tumor growth and metastasis. The introduction of miR-1 in SCLC cell lines decreases cell growth and metastasis. Mechanistically, miR-1 directly targets CXCR4, which further prevents FOXM1 binding to the RRM2 promoter and decreases SCLC growth and metastasis.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Carcinoma Pulmonar de Células Pequeñas , Humanos , Animales , Ratones , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , MicroARNs/genética , MicroARNs/metabolismo , Línea Celular Tumoral , Neoplasias Pulmonares/patología , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Proteína Forkhead Box M1/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo
5.
Cancer Metastasis Rev ; 40(2): 575-588, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33813658

RESUMEN

Mucins are high-molecular-weight glycoproteins dysregulated in aggressive cancers. The role of mucins in disease progression, tumor proliferation, and chemotherapy resistance has been studied extensively. This article provides a comprehensive review of mucin's function as a physical barrier and the implication of mucin overexpression in impeded drug delivery to solid tumors. Mucins regulate the epithelial to mesenchymal transition (EMT) of cancer cells via several canonical and non-canonical oncogenic signaling pathways. Furthermore, mucins play an extensive role in enriching and maintaining the cancer stem cell (CSC) population, thereby sustaining the self-renewing and chemoresistant cellular pool in the bulk tumor. It has recently been demonstrated that mucins regulate the metabolic reprogramming during oncogenesis and cancer progression, which account for tumor cell survival, proliferation, and drug-resistance. This review article focuses on delineating mucin's role in oncogenic signaling and aberrant regulation of gene expressions, culminating in CSC maintenance, metabolic rewiring, and development of chemoresistance, tumor progression, and metastasis.


Asunto(s)
Mucinas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Animales , Reprogramación Celular/fisiología , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Humanos , Metástasis de la Neoplasia , Neoplasias/patología , Células Madre Neoplásicas/patología , Transducción de Señal
6.
Gastroenterology ; 161(6): 1998-2013.e7, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34418441

RESUMEN

BACKGROUND & AIMS: Tumor-microenvironment factors and cancer stem cells (CSCs) play a critical role in the aggressiveness of pancreatic cancer (PC). However, the degree to which tumor-microenvironment factors promote stemness remains unexplored. Here, we examined whether cancer-associated fibroblasts (CAFs) promote CSC features in PC. METHODS: PC cells were treated long-term (30, 60, and 90 days) with conditioned media (CM)-derived from normal human fibroblasts (NFs) and CAFs. The stemness features of tumorsphere formation and stemness populations, along with CSCs markers, were analyzed using 2-dimensional and 3-dimensional sodium alginate bead-based co-culture models. Immunohistochemistry and immunofluorescence staining were performed for CSCs and fibroblast markers in autochthonous KrasG12D/+; Trp53R172H/+; Pdx1-Cre mice and human pancreatic tumors. Polymerase chain reaction array and gene knockdown were performed to identify the mechanism of stemness enrichment. RESULTS: Long-term treatment of PC cells with CAF-CM enriched stemness, as indicated by significantly higher CD44+, ALDH+, and AF+ populations in PC cells. Increased tumorsphere formation and elevated CSC, self-renewal, and drug-resistance markers in CAF-CM-treated PC cells were observed. In addition, CAFs co-cultured with PC cells in the 3-dimensional model showed a substantial increase in stemness features. CD44 and α-smooth muscle actin were positively correlated and their expressions progressively increased from the early to late stages of KrasG12D/+; Trp53R172H/+; Pdx1-Cre mouse and human pancreatic tumors. Osteopontin/secreted phosphoprotein 1 was identified as the top differentially overexpressed gene in CAF-CM-treated PC cells and knockdown of osteopontin/secreted phosphoprotein 1 significantly reduced stemness characteristics in CAF-CM-treated PC cells. CONCLUSIONS: Our data uncovered novel insight into the interplay between CAF and enrichment of stemness population through the osteopontin/secreted phosphoprotein 1-CD44 axis in PC.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Receptores de Hialuranos/metabolismo , Células Madre Neoplásicas/metabolismo , Osteopontina/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral , Animales , Fibroblastos Asociados al Cáncer/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Técnicas de Cocultivo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Receptores de Hialuranos/genética , Masculino , Ratones Desnudos , Ratones Transgénicos , Invasividad Neoplásica , Células Madre Neoplásicas/patología , Osteopontina/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Comunicación Paracrina , Fenotipo , Transducción de Señal
7.
Mol Cancer ; 20(1): 54, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33740988

RESUMEN

Lung cancer (LC) is a heterogeneous disease consisting mainly of two subtypes, non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), and remains the leading cause of death worldwide. Despite recent advances in therapies, the overall 5-year survival rate of LC remains less than 20%. The efficacy of current therapeutic approaches is compromised by inherent or acquired drug-resistance and severe off-target effects. Therefore, the identification and development of innovative and effective therapeutic approaches are critically desired for LC. The development of RNA-mediated gene inhibition technologies was a turning point in the field of RNA biology. The critical regulatory role of different RNAs in multiple cancer pathways makes them a rich source of targets and innovative tools for developing anticancer therapies. The identification of antisense sequences, short interfering RNAs (siRNAs), microRNAs (miRNAs or miRs), anti-miRs, and mRNA-based platforms holds great promise in preclinical and early clinical evaluation against LC. In the last decade, RNA-based therapies have substantially expanded and tested in clinical trials for multiple malignancies, including LC. This article describes the current understanding of various aspects of RNA-based therapeutics, including modern platforms, modifications, and combinations with chemo-/immunotherapies that have translational potential for LC therapies.


Asunto(s)
Biomarcadores de Tumor , Terapia Genética/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , ARN/genética , Animales , Antagomirs , Vacunas contra el Cáncer , Estudios Clínicos como Asunto , Terapia Combinada/métodos , Evaluación Preclínica de Medicamentos , Terapia Genética/tendencias , Humanos , MicroARNs/genética , Interferencia de ARN , ARN sin Sentido , ARN Mensajero/genética , Resultado del Tratamiento
8.
Mol Cancer ; 19(1): 37, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32098629

RESUMEN

BACKGROUND: Differential expression of mucins has been associated with several cancers including colorectal cancer (CRC). In normal physiological conditions, secretory mucin MUC5AC is not expressed in the colonic mucosa, whereas its aberrant expression is observed during development of colon cancer and its precursor lesions. To date, the molecular mechanism of MUC5AC in CRC progression and drug resistance remains obscure. METHODS: MUC5AC expression was determined in colon tissue microarray by immunohistochemistry. A RNA interference and CRISPR/Cas9-mediated system was used to knockdown/knockout the MUC5AC in CRC cell lines to delineate its role in CRC tumorigenesis using in vitro functional assays and in vivo (sub-cutaneous and colon orthotopic) mouse models. Finally, CRC cell lines and xenograft models were used to identify the mechanism of action of MUC5AC. RESULTS: Overexpression of MUC5AC is observed in CRC patient tissues and cell lines. MUC5AC expression resulted in enhanced cell invasion and migration, and decreased apoptosis of CRC cells. MUC5AC interacted with CD44 physically, which was accompanied by the activation of Src signaling. Further, the presence of MUC5AC resulted in enhanced tumorigenesis and appearance of metastatic lesions in orthotopic mouse model. Additionally, up-regulation of MUC5AC resulted in resistance to 5-fluorouracil (5-FU) and oxaliplatin, and its knockout increased sensitivity to these drugs. Finally, we observed that up-regulation of MUC5AC conferred resistance to 5-FU through down-regulation of p53 and its target gene p21 and up-regulation of ß-catenin and its target genes CD44 and Lgr5. CONCLUSION: Our findings suggest that differential expression of secretory mucin MUC5AC results in enhanced tumorigenesis and also confers chemoresistance via CD44/ß-catenin/p53/p21 signaling.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos , Receptores de Hialuranos/metabolismo , Mucina 5AC/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Progresión de la Enfermedad , Fluorouracilo/administración & dosificación , Regulación Neoplásica de la Expresión Génica , Humanos , Receptores de Hialuranos/genética , Ratones , Ratones Desnudos , Mucina 5AC/genética , Oxaliplatino/administración & dosificación , Pronóstico , Tasa de Supervivencia , Células Tumorales Cultivadas , Vía de Señalización Wnt , Ensayos Antitumor por Modelo de Xenoinjerto , beta Catenina/genética , beta Catenina/metabolismo
9.
Gastroenterology ; 155(3): 892-908.e6, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29864419

RESUMEN

BACKGROUND & AIMS: Cigarette smoking is a major risk factor for pancreatic cancer. Aggressive pancreatic tumors contain cancer cells with stem cell features. We investigated whether cigarette smoke induces stem cell features in pancreatic cancer cells. METHODS: KrasG12D; Pdx1-Cre mice were exposed to cigarette smoke or clean air (controls) for up to 20 weeks; pancreata were collected and analyzed by histology, quantitative reverse transcription polymerase chain reaction, and confocal immunofluorescence microscopy. HPNE and Capan1 cells were exposed to cigarette smoke extract (CSE), nicotine and nicotine-derived carcinogens (NNN or NNK), or clean air (controls) for 80 days and evaluated for stem cell markers and features using flow cytometry-based autofluorescence, sphere formation, and immunoblot assays. Proteins were knocked down in cells with small interfering RNAs. We performed RNA sequencing analyses of CSE-exposed cells. We used chromatin immunoprecipitation assays to confirm the binding of FOS-like 1, AP-1 transcription factor subunit (FOSL1) to RNA polymerase II-associated factor (PAF1) promoter. We obtained pancreatic ductal adenocarcinoma (PDAC) and matched nontumor tissues (n = 15) and performed immunohistochemical analyses. RESULTS: Chronic exposure of HPNE and Capan1 cells to CSE caused them to increase markers of stem cells, including autofluorescence and sphere formation, compared with control cells. These cells increased expression of ABCG2, SOX9, and PAF1, via cholinergic receptor nicotinic alpha 7 subunit (CHRNA7) signaling to mitogen-activated protein kinase 1 and FOSL1. CSE-exposed pancreatic cells with knockdown of PAF1 did not show stem cell features. Exposure of cells to NNN and NNK led to increased expression of CHRNA7, FOSL1, and PAF1 along with stem cell features. Pancreata from KrasG12D; Pdx1-Cre mice exposed to cigarette smoke had increased levels of PAF1 mRNA and protein, compared with control mice, as well as increased expression of SOX9. Levels of PAF1 and FOSL1 were increased in PDAC tissues, especially those from smokers, compared with nontumor pancreatic tissue. CSE exposure increased expression of PHD-finger protein 5A, a pluripotent transcription factor and its interaction with PAF1. CONCLUSIONS: Exposure to cigarette smoke activates stem cell features of pancreatic cells, via CHRNA7 signaling and FOSL1 activation of PAF1 expression. Levels of PAF1 are increased in pancreatic tumors of humans and mice with chronic cigarette smoke exposure.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Proteínas Portadoras/metabolismo , Fumar Cigarrillos/efectos adversos , Células Madre Neoplásicas/metabolismo , Neoplasias Pancreáticas/metabolismo , Animales , Carcinoma Ductal Pancreático/etiología , Línea Celular Tumoral , Humanos , Ratones , Páncreas/citología , Neoplasias Pancreáticas/etiología , Proteínas Proto-Oncogénicas c-fos/fisiología , Transducción de Señal/fisiología , Receptor Nicotínico de Acetilcolina alfa 7/fisiología
10.
FASEB J ; 28(10): 4183-99, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25002120

RESUMEN

MUC16 is a high-molecular-weight glycoprotein that is expressed by the various epithelial cell surfaces of the human body to protect the cell layer from a myriad of insults. It is the largest mucin known to date, with an ∼22,152 aa sequence. Structurally, MUC16 is characterized into 3 distinct domains: the amino terminal, the tandem repeat, and the carboxyl terminal domain, with each domain having unique attributes. The extracellular portion of MUC16 is shed into the bloodstream and serves as a biomarker for diagnosing and monitoring patients with cancer; however, its functional role in cancer is yet to be elucidated. Several factors contribute to this challenge, which include the large protein size; the extensive glycosylation that the protein undergoes, which confers functional heterogeneity; lack of specific antibodies that detect the unique domains of MUC16; and the existence of splicing variants. Despite these limitations, MUC16 has been established as a molecule of significant application in cancer. Hence, in this review, we discuss the various aspects of MUC16, which include its discovery, structure, and biological significance both in benign and malignant conditions with an attempt to dissect its functional relevance


Asunto(s)
Antígeno Ca-125/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias/metabolismo , Animales , Antígeno Ca-125/genética , Células Epiteliales/metabolismo , Humanos , Proteínas de la Membrana/genética , Neoplasias/diagnóstico
11.
Exp Mol Med ; 56(6): 1450-1460, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38825648

RESUMEN

Non-small cell lung carcinoma (NSCLC) exhibits a heightened propensity for brain metastasis, posing a significant clinical challenge. Mucin 5ac (MUC5AC) plays a pivotal role in the development of lung adenocarcinoma (LUAD); however, its role in causing brain metastases remains unknown. In this study, we aimed to investigate the contribution of MUC5AC to brain metastasis in patients with LUAD utilizing various brain metastasis models. Our findings revealed a substantial increase in the MUC5AC level in LUAD brain metastases (LUAD-BrM) samples and brain-tropic cell lines compared to primary samples or parental control cell lines. Intriguingly, depletion of MUC5AC in brain-tropic cells led to significant reductions in intracranial metastasis and tumor growth, and improved survival following intracardiac injection, in contrast to the observations in the control groups. Proteomic analysis revealed that mechanistically, MUC5AC depletion resulted in decreased expression of metastasis-associated molecules. There were increases in epithelial-to-mesenchymal transition, tumor invasiveness, and metastasis phenotypes in tumors with high MUC5AC expression. Furthermore, immunoprecipitation and proteomic analysis revealed a novel interaction of MUC5AC with Annexin A2 (ANXA2), which activated downstream matrix metalloproteases and facilitated extracellular matrix degradation to promote metastasis. Disrupting MUC5AC-ANXA2 signaling with a peptide inhibitor effectively abrogated the metastatic process. Additionally, treatment of tumor cells with an astrocyte-conditioned medium or the chemokine CCL2 resulted in upregulation of MUC5AC expression and enhanced brain colonization. In summary, our study demonstrates that the MUC5AC/ANXA2 signaling axis promotes brain metastasis, suggesting a potential therapeutic paradigm for LUAD patients with high MUC5AC expression.


Asunto(s)
Adenocarcinoma del Pulmón , Anexina A2 , Neoplasias Encefálicas , Neoplasias Pulmonares , Mucina 5AC , Transducción de Señal , Humanos , Mucina 5AC/metabolismo , Mucina 5AC/genética , Animales , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/genética , Línea Celular Tumoral , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/genética , Ratones , Anexina A2/metabolismo , Anexina A2/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Femenino
12.
Front Oncol ; 13: 1073820, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36816942

RESUMEN

MUC16/CA125 is one of the few oldest cancer biomarkers still used in current clinical practice. As mesothelium is an abundant source of MUC16 and a major contributor to stromal heterogeneity in PDAC, we investigated the regulation of MUC16 in tumor and stromal compartments individually. The trajectories constructed using the single-cell transcriptomes of stromal cells from KPC tumors demonstrated continuity in the trajectory path between MUC16-expressing mesothelial cells and other CAF subsets. Further, the tumor tissues of MUC16 whole-body knockout (KPCM) showed dysregulation in the markers of actomyosin assembly and fibroblast differentiation (iCAF and myCAF), indicating that MUC16 has an extra-tumoral role in controlling CAF differentiation. Although we found mesothelium-derivative stromal cells to be bystanders in normal pancreas, the proportion of these cells was higher in invasive PDAC, particularly in TP53 deficient tumors. Moreover, we also detail the regulation of MUC16, KRAS, and SOX9 by TP53 family members (TP53 and TP63) using multi-omics data from knockout models, PDAC cell lines, and human PDAC tissues.

13.
Cell Rep ; 42(2): 112043, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36709426

RESUMEN

Cisplatin- and gemcitabine-based chemotherapeutics represent a mainstay of cancer therapy for most solid tumors; however, resistance limits their curative potential. Here, we identify RNA polymerase II-associated factor 1 (PAF1) as a common driver of cisplatin and gemcitabine resistance in human cancers (ovarian, lung, and pancreas). Mechanistically, cisplatin- and gemcitabine-resistant cells show enhanced DNA repair, which is inhibited by PAF1 silencing. We demonstrate an increased interaction of PAF1 with RAD52 in resistant cells. Targeting the PAF1 and RAD52 axis combined with cisplatin or gemcitabine strongly diminishes the survival potential of resistant cells. Overall, this study shows clinical evidence that the expression of PAF1 contributes to chemotherapy resistance and worse clinical outcome for lethal cancers.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Resistencia a Antineoplásicos , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Cisplatino/uso terapéutico , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Gemcitabina/uso terapéutico , Neoplasias Pulmonares/genética , Proteína Recombinante y Reparadora de ADN Rad52 , Factores de Transcripción
14.
NPJ Precis Oncol ; 7(1): 74, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567918

RESUMEN

Aberrantly expressed onco-mucin 16 (MUC16) and its post-cleavage generated surface tethered carboxy-terminal (MUC16-Cter) domain are strongly associated with poor prognosis and lethality of pancreatic (PC) and non-small cell lung cancer (NSCLC). To date, most anti-MUC16 antibodies are directed towards the extracellular domain of MUC16 (CA125), which is usually cleaved and shed in the circulation hence obscuring antibody accessibility to the cancer cells. Herein, we establish the utility of targeting a post-cleavage generated, surface-tethered oncogenic MUC16 carboxy-terminal (MUC16-Cter) domain by using a novel chimeric antibody in human IgG1 format, ch5E6, whose epitope expression directly correlates with disease severity in both cancers. ch5E6 binds and interferes with MUC16-associated oncogenesis, suppresses the downstream signaling pFAK(Y397)/p-p70S6K(T389)/N-cadherin axis and exert antiproliferative effects in cancer cells, 3D organoids, and tumor xenografts of both PC and NSCLC. The robust clinical correlations observed between MUC16 and N-cadherin in patient tumors and metastatic samples imply ch5E6 potential in targeting a complex and significantly occurring phenomenon of epithelial to mesenchymal transition (EMT) associated with disease aggressiveness. Our study supports evaluating ch5E6 with standard-of-care drugs, to potentially augment treatment outcomes in malignancies inflicted with MUC16-associated poor prognosis.

15.
Biochim Biophys Acta ; 1815(2): 224-40, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21277939

RESUMEN

Mucins are high molecular weight, multifunctional glycoproteins comprised of two structural classes-the large transmembrane mucins and the gel-forming or secreted mucins. The primary function of mucins is to protect and lubricate the luminal surfaces of epithelium-lined ducts in the human body. Recent studies have identified a differential expression of both membrane bound (MUC1, MUC4 and MUC16) and secreted mucins (MUC2, MUC5AC, MUC5B and MUC6) in breast cancer tissues when compared with the non-neoplastic breast tissues. Functional studies have also uncovered many unique roles of mucins during the progression of breast cancer, which include modulation in proliferative, invasive and metastatic potential of tumor cells. Mucins function through many unique domains that can form complex association with various signaling molecules including growth factor receptors and intercellular adhesion molecules. While there is growing information about mucins in various malignancies including breast cancer, no focused review is there on the expression and functional roles of mucins in breast cancer. In this present review, we have discussed the differential expression and functional roles of mucins in breast cancer. The potential of mucins as diagnostic and prognostic markers and as therapeutic targets in breast cancer have also been discussed.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/terapia , Mucinas/fisiología , Animales , Neoplasias de la Mama/fisiopatología , Progresión de la Enfermedad , Femenino , Humanos , Pronóstico
16.
Mol Cancer Res ; 20(8): 1208-1221, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35533267

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of cancer, as it commonly metastasizes to the liver resulting in an overall poor prognosis. However, the molecular mechanism involved in liver metastasis remains poorly understood. Here, we aimed to identify the MUC16-mediated molecular mechanism of PDAC-liver metastasis. Previous studies demonstrated that MUC16 and its C-terminal (Cter) domain are involved in the aggressiveness of PDAC. In this study, we observed MUC16 and its Cter expression significantly high in human PDAC tissues, PDAC organoids, and metastatic liver tissues, while no expression was observed in normal pancreatic tissues using IHC and immunofluorescence (IFC) analyses. MUC16 knockdown in SW1990 and CD18/HPAF PDAC cells significantly decreased the colony formation, migration, and endothelial/p-selectin binding. In contrast, MUC16-Cter ectopic overexpression showed significantly increased colony formation and motility in MiaPaCa2 pancreatic cancer cells. Interestingly, MUC16 promoted cell survival and colonization in the liver, mimicking an ex vivo environment. Furthermore, MUC16 enhanced liver metastasis in the in vivo mouse model. Our integrated analyses of RNA-sequencing suggested that MUC16 alters Neuropilin-2 (NRP2) and cell adhesion molecules in pancreatic cancer cells. Furthermore, we identified that MUC16 regulated NRP2 via JAK2/STAT1 signaling in PDAC. NRP2 knockdown in MUC16-overexpressed PDAC cells showed significantly decreased cell adhesion and migration. Overall, the findings indicate that MUC16 regulates NRP2 and induces metastasis in PDAC. IMPLICATIONS: This study shows that MUC16 plays a critical role in PDAC liver metastasis by mediating NRP2 regulation by JAK2/STAT1 axis, thereby paving the way for future therapy efforts for metastatic PDAC.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neuropilina-2 , Neoplasias Pancreáticas , Adenocarcinoma/patología , Animales , Antígeno Ca-125/metabolismo , Carcinoma Ductal Pancreático/patología , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundario , Proteínas de la Membrana/metabolismo , Ratones , Metástasis de la Neoplasia , Neuropilina-2/genética , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
17.
Oncogene ; 41(48): 5147-5159, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36271032

RESUMEN

MUC16, membrane-bound mucin, plays an oncogenic role in pancreatic ductal adenocarcinoma (PDAC). However, the pathological role of MUC16 in the PDAC progression, tumor microenvironment, and metastasis in cooperation with KrasG12D and Trp53R172H mutations remains unknown. Deletion of Muc16 with activating mutations KrasG12D/+ and Trp53R172H/+ in mice significantly decreased progression and prolonged overall survival in KrasG12D/+; Trp53R172H/+; Pdx-1-Cre; Muc16-/- (KPCM) and KrasG12D/+; Pdx-1-Cre; Muc16-/- (KCM), as compared to KrasG12D/+; Trp53R172H/+; Pdx-1-Cre (KPC) and KrasG12D/+; Pdx-1-Cre (KC) mice, respectively. Muc16 knockout pancreatic tumor (KPCM) displays decreased tumor microenvironment factors and significantly reduced incidence of liver and lung metastasis compared to KPC. Furthermore, in silico data analysis showed a positive correlation of MUC16 with activated stroma and metastasis-associated genes. KPCM mouse syngeneic cells had significantly lower metastatic and endothelial cell binding abilities than KPC cells. Similarly, KPCM organoids significantly decreased the growth rate compared to KPC organoids. Interestingly, RNA-seq data revealed that the cytoskeletal proteins Actg2, Myh11, and Pdlim3 were downregulated in KPCM tumors. Further knockdown of these genes showed reduced metastatic potential. Overall, our results demonstrate that Muc16 alters the tumor microenvironment factors during pancreatic cancer progression and metastasis by changing the expression of Actg2, Myh11, and Pdlim3 genes.


Asunto(s)
Carcinoma Ductal Pancreático , Mucinas , Neoplasias Pancreáticas , Animales , Ratones , Carcinogénesis , Carcinoma Ductal Pancreático/patología , Mucinas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Microambiente Tumoral/genética , Neoplasias Pancreáticas
18.
Cancer Lett ; 510: 79-92, 2021 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-33878394

RESUMEN

Despite preclinical success, monotherapies targeting EGFR or cyclin D1-CDK4/6 in Head and Neck squamous cell carcinoma (HNSCC) have shown a limited clinical outcome. Here, we aimed to determine the combined effect of palbociclib (CDK4/6) and afatinib (panEGFR) inhibitors as an effective strategy to target HNSCC. Using TCGA-HNSCC co-expression analysis, we found that patients with high EGFR and cyclin D1 expression showed enrichment of gene clusters associated with cell-growth, glycolysis, and epithelial to mesenchymal transition processes. Phosphorylated S6 (p-S6), a downstream effector of EGFR and cyclin D1-CDK4/6 signalling, showed a progressive increase from normal oral tissues to leukoplakia and frank malignancy, and associated with poor outcome of the patients. This increased p-S6 expression was drastically reduced after combination treatment with afatinib and palbociclib in the cell lines and mouse models, suggesting its utiliy as a prognostic marker in HNSCC. Combination treatment also reduced the cell growth and induced cell senescence via increasing reactive oxygen species with concurrent ablation of glycolytic and tricarboxylic acid cycle intermediates. Finally, our findings in sub-cutaneous and genetically engineered mouse model (K14-CreERtam;LSL-KrasG12D/+;Trp53R172H/+) studies showed a significant reduction in the tumor growth and delayed tumor progression after combination treatment. This study collectively demonstrates that dual targeting may be a critical therapeutic strategy in blocking tumor progression via inducing metabolic alteration and warrants clinical evaluation.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Receptores ErbB/antagonistas & inhibidores , Humanos , Ratones , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
19.
Mol Oncol ; 15(7): 1866-1881, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33792183

RESUMEN

Lung cancer (LC) is the leading cause of cancer-related mortality. However, the molecular mechanisms associated with the development of metastasis are poorly understood. Understanding the biology of LC metastasis is critical to unveil the molecular mechanisms for designing targeted therapies. We developed two genetically engineered LC mouse models KrasG12D/+ ; Trp53R172H/+ ; Ad-Cre (KPA) and KrasG12D/+ ; Ad-Cre (KA). Survival analysis showed significantly (P = 0.0049) shorter survival in KPA tumor-bearing mice as compared to KA, suggesting the aggressiveness of the model. Our transcriptomic data showed high expression of N-acetylgalactosaminide alpha-2, 6-sialyltransferase 1 (St6galnac-I) in KPA compared to KA tumors. ST6GalNAc-I is an O-glycosyltransferase, which catalyzes the addition of sialic acid to the initiating GalNAc residues forming sialyl Tn (STn) on glycoproteins, such as mucins. Ectopic expression of species-specific p53 mutants in the syngeneic mouse and human LC cells led to increased cell migration and high expression of ST6GalNAc-I, STn, and MUC5AC. Immunoprecipitation of MUC5AC in the ectopically expressing p53R175H cells exhibited higher affinity toward STn. In addition, ST6GalNAc-I knockout (KO) cells also showed decreased migration, possibly due to reduced glycosylation of MUC5AC as observed by low STn on the glycoprotein. Interestingly, ST6GalNAc-I KO cells injected mice developed less liver metastasis (P = 0.01) compared to controls, while colocalization of MUC5AC and STn was observed in the liver metastatic tissues of control mice. Collectively, our findings support the hypothesis that mutant p53R175H mediates ST6GalNAc-I expression, leading to the sialyation of MUC5AC, and thus contribute to LC liver metastasis.


Asunto(s)
Neoplasias Hepáticas , Neoplasias Pulmonares , Animales , Glicosilación , Humanos , Neoplasias Pulmonares/genética , Ratones , Mucina 5AC/metabolismo , Ácido N-Acetilneuramínico , Sialiltransferasas/genética , Sialiltransferasas/metabolismo
20.
Cancer Treat Res Commun ; 22: 100162, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31675535

RESUMEN

BACKGROUND: Relapsed/refractory small cell lung cancer (SCLC) has a poor prognosis, with no good options. We evaluated a novel combination of topotecan and doxorubicin, providing sequential topoisomerase I and II inhibition, in this setting. MATERIALS AND METHODS: Adult patients (>19 years) with relapsed/refractory SCLC, who had received at least one prior chemotherapy regimen were eligible. Patients received escalating doses of oral topotecan on days 1-5 of each three week cycle (maximum - 5 cycles). The dosing cohorts were: 0.85 mg/m2, 1.05 mg/m2, 1.35 mg/m2, 1.65 mg/m2 and 2.30 mg/m2. All patients received weekly doxorubicin 20 mg/m2 intravenously starting day 6 of the first cycle and continued weekly for a maximum of 15 weeks. In the absence of pre-specified dose limiting toxicities (DLT), patients were enrolled serially to escalated dose level cohorts. RESULTS: Twenty-two patients were enrolled, of which 20 were evaluable. Median age was 61 years; 74% were male and 95% were Caucasian. Hematologic side effects were the most common adverse events. There were no therapy-related Grade 5 toxicities. Incidence of DLT based on cohorts were: DL2: 1/6 (Grade 4 thrombocytopenia), DL3: 1/6 (AST elevation) and DL4: 2/4 (Grade 4 thrombocytopenia). Response rate was 20% (4/20) and disease control rate (SD + PR) was 36%. The median progression free and overall survival were 3.6 months and 6 months, respectively. CONCLUSIONS: The combination of topotecan and doxorubicin was safe and effective in relapsed/refractory SCLC. The maximum tolerated dose of oral topotecan was 1.35 mg/m2 when given concurrently with weekly doxorubicin.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Doxorrubicina/efectos adversos , Neoplasias Pulmonares/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Topotecan/efectos adversos , Administración Oral , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Aspartato Aminotransferasas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Enfermedad Hepática Inducida por Sustancias y Drogas/epidemiología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Relación Dosis-Respuesta a Droga , Doxorrubicina/administración & dosificación , Esquema de Medicación , Resistencia a Antineoplásicos , Femenino , Humanos , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Recurrencia Local de Neoplasia/sangre , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/patología , Supervivencia sin Progresión , Criterios de Evaluación de Respuesta en Tumores Sólidos , Índice de Severidad de la Enfermedad , Carcinoma Pulmonar de Células Pequeñas/sangre , Carcinoma Pulmonar de Células Pequeñas/mortalidad , Carcinoma Pulmonar de Células Pequeñas/patología , Trombocitopenia/sangre , Trombocitopenia/inducido químicamente , Trombocitopenia/diagnóstico , Trombocitopenia/epidemiología , Topotecan/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA