Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Virol ; 96(24): e0115022, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36448800

RESUMEN

Hepatitis B virus (HBV) replicates its genomic DNA by reverse transcription of an RNA intermediate, termed pregenomic RNA (pgRNA), within nucleocapsid. It had been shown that transfection of in vitro-transcribed pgRNA initiated viral replication in human hepatoma cells. We demonstrated here that viral capsids, single-stranded DNA, relaxed circular DNA (rcDNA) and covalently closed circular DNA (cccDNA) became detectable sequentially at 3, 6, 12, and 24 h post-pgRNA transfection into Huh7.5 cells. The levels of viral DNA replication intermediates and cccDNA peaked at 24 and 48 h post-pgRNA transfection, respectively. HBV surface antigen (HBsAg) became detectable in culture medium at day 4 posttransfection. Interestingly, the early robust viral DNA replication and cccDNA synthesis did not depend on the expression of HBV X protein (HBx), whereas HBsAg production was strictly dependent on viral DNA replication and expression of HBx, consistent with the essential role of HBx in the transcriptional activation of cccDNA minichromosomes. While the robust and synchronized HBV replication within 48 h post-pgRNA transfection is particularly suitable for the precise mapping of the HBV replication steps, from capsid assembly to cccDNA formation, targeted by distinct antiviral agents, the treatment of cells starting at 48 h post-pgRNA transfection allows the assessment of antiviral agents on mature nucleocapsid uncoating, cccDNA synthesis, and transcription, as well as viral RNA stability. Moreover, the pgRNA launch system could be used to readily assess the impacts of drug-resistant variants on cccDNA formation and other replication steps in the viral life cycle. IMPORTANCE Hepadnaviral pgRNA not only serves as a template for reverse transcriptional replication of viral DNA but also expresses core protein and DNA polymerase to support viral genome replication and cccDNA synthesis. Not surprisingly, cytoplasmic expression of duck hepatitis B virus pgRNA initiated viral replication leading to infectious virion secretion. However, HBV replication and antiviral mechanism were studied primarily in human hepatoma cells transiently or stably transfected with plasmid-based HBV replicons. The presence of large amounts of transfected HBV DNA or transgenes in cellular chromosomes hampered the robust analyses of HBV replication and cccDNA function. As demonstrated here, the pgRNA launch HBV replication system permits the accurate mapping of antiviral target and investigation of cccDNA biosynthesis and transcription using secreted HBsAg as a convenient quantitative marker. The effect of drug-resistant variants on viral capsid assembly, genome replication, and cccDNA biosynthesis and function can also be assessed using this system.


Asunto(s)
Virus de la Hepatitis B , Virología , Humanos , Antivirales/farmacología , Replicación del ADN , ADN Circular/genética , ADN Circular/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Hepatitis B/virología , Antígenos de Superficie de la Hepatitis B/metabolismo , Virus de la Hepatitis B/fisiología , ARN Viral/genética , ARN Viral/metabolismo , Replicación Viral , Virología/métodos , Línea Celular Tumoral
2.
Psychol Med ; 53(10): 4788-4798, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-35912846

RESUMEN

BACKGROUND: Individuals with autism spectrum disorder (ASD) are challenged not only by the defining features of social-communication deficits and restricted repetitive behaviors, but also by a myriad of psychopathology varying in severity. Different cognitive deficits underpin these psychopathologies, which could be subjected to intervention to alter the course of the disorder. Understanding domain-specific mediating effects of cognition is essential for developing targeted intervention strategies. However, the high degree of inter-correlation among different cognitive functions hinders elucidation of individual effects. METHODS: In the Philadelphia Neurodevelopmental Cohort, 218 individuals with ASD were matched with 872 non-ASD controls on sex, age, race, and socioeconomic status. Participants of this cohort were deeply and broadly phenotyped on neurocognitive abilities and dimensional psychopathology. Using structural equation modeling, inter-correlation among cognitive domains were adjusted before mediation analysis on outcomes of multi-domain psychopathology and functional level. RESULTS: While social cognition, complex cognition, and memory each had a unique pattern of mediating effect on psychopathology domains in ASD, none had significant effects on the functional level. In contrast, executive function was the only cognitive domain that exerted a generalized negative impact on every psychopathology domain (p factor, anxious-misery, psychosis, fear, and externalizing), as well as functional level. CONCLUSIONS: Executive function has a unique association with the severity of comorbid psychopathology in ASD, and could be a target of interventions. As executive dysfunction occurs variably in ASD, our result also supports the clinical utility of assessing executive function for prognostic purposes.


Asunto(s)
Trastorno del Espectro Autista , Función Ejecutiva , Humanos , Niño , Estudios de Casos y Controles , Cognición , Psicopatología
3.
Bioorg Med Chem Lett ; 92: 129350, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37247697

RESUMEN

The protein that forms the inner shell of the HBV virus, known as the capsid core protein, plays a crucial role in allowing chronic HBV infections to persist. Studies have shown that disrupting the assembly of the capsid can effectively combat the virus, and small molecule drugs that target the HBV capsid assembly modulator (CAM) process have been successful in clinical trials. Herein is described a distinct series of di-fluoro azepane CAMs with exceptional potency, pharmacokinetic, and solubility properties.


Asunto(s)
Cápside , Virus de la Hepatitis B , Cápside/metabolismo , Ensamble de Virus , Antivirales/metabolismo , Proteínas de la Cápside/metabolismo , Replicación Viral
4.
J Virol ; 95(18): e0057421, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34191584

RESUMEN

Noncanonical poly(A) polymerases PAPD5 and PAPD7 (PAPD5/7) stabilize hepatitis B virus (HBV) RNA via the interaction with the viral posttranscriptional regulatory element (PRE), representing new antiviral targets to control HBV RNA metabolism, hepatitis B surface antigen (HBsAg) production, and viral replication. Inhibitors targeting these proteins are being developed as antiviral therapies; therefore, it is important to understand how PAPD5/7 coordinate to stabilize HBV RNA. Here, we utilized a potent small-molecule AB-452 as a chemical probe, along with genetic analyses to dissect the individual roles of PAPD5/7 in HBV RNA stability. AB-452 inhibits PAPD5/7 enzymatic activities and reduces HBsAg both in vitro (50% effective concentration [EC50] ranged from 1.4 to 6.8 nM) and in vivo by 0.94 log10. Our genetic studies demonstrate that the stem-loop alpha sequence within PRE is essential for both maintaining HBV poly(A) tail integrity and determining sensitivity toward the inhibitory effect of AB-452. Although neither single knockout (KO) of PAPD5 nor PAPD7 reduces HBsAg RNA and protein production, PAPD5 KO does impair poly(A) tail integrity and confers partial resistance to AB-452. In contrast, PAPD7 KO did not result in any measurable changes within the HBV poly(A) tails, but cells with both PAPD5 and PAPD7 KO show reduced HBsAg production and conferred complete resistance to AB-452 treatment. Our results indicate that PAPD5 plays a dominant role in stabilizing viral RNA by protecting the integrity of its poly(A) tail, while PAPD7 serves as a second line of protection. These findings inform PAPD5-targeted therapeutic strategies and open avenues for further investigating PAPD5/7 in HBV replication. IMPORTANCE Chronic hepatitis B affects more than 250 million patients and is a major public health concern worldwide. HBsAg plays a central role in maintaining HBV persistence, and as such, therapies that aim at reducing HBsAg through destabilizing or degrading HBV RNA have been extensively investigated. Besides directly degrading HBV transcripts through antisense oligonucleotides or RNA silencing technologies, small-molecule compounds targeting host factors such as the noncanonical poly(A) polymerase PAPD5 and PAPD7 have been reported to interfere with HBV RNA metabolism. Herein, our antiviral and genetic studies using relevant HBV infection and replication models further characterize the interplays between the cis element within the viral sequence and the trans elements from the host factors. PAPD5/7-targeting inhibitors, with oral bioavailability, thus represent an opportunity to reduce HBsAg through destabilizing HBV RNA.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Virus de la Hepatitis B/genética , Hepatitis B/virología , ARN Nucleotidiltransferasas/metabolismo , Estabilidad del ARN , ARN Viral/química , Replicación Viral , Animales , Antivirales/farmacología , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Proteínas Cromosómicas no Histona/genética , ADN Polimerasa Dirigida por ADN/genética , Inhibidores Enzimáticos/farmacología , Células Hep G2 , Hepatitis B/genética , Hepatitis B/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Nucleotidiltransferasas/antagonistas & inhibidores , ARN Nucleotidiltransferasas/genética , ARN Viral/genética
5.
Bioorg Med Chem Lett ; 72: 128823, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35644301

RESUMEN

The HBV capsid core protein serves a number of important functions in the viral life cycle enabling chronic HBV infection to persist, and therefore is a promising drug target. Interfering with capsid assembly has shown efficacy in clinical trials with small molecule capsid assembly modulators (CAMs). Herein is described the further optimization of a progressive series of diazepinone HBV CAMs.


Asunto(s)
Cápside , Virus de la Hepatitis B , Antivirales/metabolismo , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Virus de la Hepatitis B/metabolismo , Ensamble de Virus
6.
Bioorg Med Chem Lett ; 52: 128353, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492302

RESUMEN

The HBV core protein serves multiple essential functions in the viral life cycle that enable chronic HBV infection to persist, and as such, represents a promising drug target. Modulation of the HBV capsid assembly has shown efficacy in early clinical trials through use of small molecule capsid assembly modulators (CAMs). Herein is described the evolution and SAR of a novel pyrazolo piperidine lead series into advanced oxadiazepinone HBV CAMs.


Asunto(s)
Antivirales/farmacología , Azepinas/farmacología , Proteínas de la Cápside/antagonistas & inhibidores , Virus de la Hepatitis B/efectos de los fármacos , Antivirales/química , Azepinas/química , Proteínas de la Cápside/metabolismo , Relación Dosis-Respuesta a Droga , Virus de la Hepatitis B/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
7.
Bioorg Med Chem Lett ; 39: 127848, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33610748

RESUMEN

The HBV core protein is a druggable target of interest due to the multiple essential functions in the HBV life cycle to enable chronic HBV infection. The core protein oligomerizes to form the viral capsid, and modulation of the HBV capsid assembly has shown efficacy in clinical trials. Herein is described the identification and hit to lead SAR of a novel series of pyrazolo piperidine HBV capsid assembly modulators.


Asunto(s)
Antivirales/farmacología , Proteínas de la Cápside/antagonistas & inhibidores , Virus de la Hepatitis B/efectos de los fármacos , Piperidinas/farmacología , Pirazoles/farmacología , Antivirales/química , Proteínas de la Cápside/metabolismo , Relación Dosis-Respuesta a Droga , Virus de la Hepatitis B/metabolismo , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Piperidinas/química , Pirazoles/química , Relación Estructura-Actividad
8.
Artículo en Inglés | MEDLINE | ID: mdl-30373799

RESUMEN

NVR 3-778 is the first capsid assembly modulator (CAM) that has demonstrated antiviral activity in hepatitis B virus (HBV)-infected patients. NVR 3-778 inhibited the generation of infectious HBV DNA-containing virus particles with a mean antiviral 50% effective concentration (EC50) of 0.40 µM in HepG2.2.15 cells. The antiviral profile of NVR 3-778 indicates pan-genotypic antiviral activity and a lack of cross-resistance with nucleos(t)ide inhibitors of HBV replication. The combination of NVR 3-778 with nucleos(t)ide analogs in vitro resulted in additive or synergistic antiviral activity. Mutations within the hydrophobic pocket at the dimer-dimer interface of the core protein could confer resistance to NVR 3-778, which is consistent with the ability of the compound to bind to core and to induce capsid assembly. By targeting core, NVR 3-778 inhibits pregenomic RNA encapsidation, viral replication, and the production of HBV DNA- and HBV RNA-containing particles. NVR 3-778 also inhibited de novo infection and viral replication in primary human hepatocytes with EC50 values of 0.81 µM against HBV DNA and between 3.7 and 4.8 µM against the production of HBV antigens and intracellular HBV RNA. NVR 3-778 showed favorable pharmacokinetics and safety in animal species, allowing serum levels in excess of 100 µM to be achieved in mice and, thus, enabling efficacy studies in vivo The overall preclinical profile of NVR 3-778 predicts antiviral activity in vivo and supports its further evaluation for safety, pharmacokinetics, and antiviral activity in HBV-infected patients.


Asunto(s)
Antivirales/farmacología , Benzamidas/farmacología , Cápside/efectos de los fármacos , ADN Viral/antagonistas & inhibidores , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B/tratamiento farmacológico , Piperidinas/farmacología , ARN Viral/antagonistas & inhibidores , Animales , Antígenos Virales/genética , Antígenos Virales/metabolismo , Antivirales/sangre , Antivirales/química , Antivirales/farmacocinética , Benzamidas/sangre , Benzamidas/química , Benzamidas/farmacocinética , Cápside/química , Cápside/metabolismo , ADN Viral/genética , ADN Viral/metabolismo , Evaluación Preclínica de Medicamentos , Femenino , Células Hep G2 , Hepatitis B/virología , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Hepatocitos/virología , Humanos , Masculino , Ratones , Pruebas de Sensibilidad Microbiana , Piperidinas/sangre , Piperidinas/química , Piperidinas/farmacocinética , Cultivo Primario de Células , ARN Viral/genética , ARN Viral/metabolismo , Proteínas del Núcleo Viral/antagonistas & inhibidores , Proteínas del Núcleo Viral/genética , Proteínas del Núcleo Viral/metabolismo , Replicación Viral/efectos de los fármacos
9.
Gastroenterology ; 154(3): 652-662.e8, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29079518

RESUMEN

BACKGROUND & AIMS: NVR3-778 is a capsid assembly modulator in clinical development. We determined the in vivo antiviral efficacy and effects on innate and endoplasmic reticulum (ER) stress responses of NVR3-778 alone or in combination with pegylated interferon alpha (peg-IFN) and compared with entecavir. METHODS: We performed 2 studies, with a total of 61 uPA/SCID mice with humanized livers. Mice were infected with a hepatitis B virus (HBV) genotype C preparation; we waited 8 weeks for persistent infection of the human hepatocytes in livers of mice. Mice were then randomly assigned to groups (5 or 6 per group) given vehicle (control), NVR3-778, entecavir, peg-IFN, NVR3-778 + entecavir, or NVR3-778 + peg-IFN for 6 weeks. We measured levels of HB surface antigen, HB e antigen, HBV RNA, alanine aminotransferase, and human serum albumin at different time points. Livers were collected and analyzed by immunohistochemistry; levels of HBV DNA, covalently closed circular DNA, and HBV RNA, along with markers of ER stress and IFN response, were quantified. RESULTS: Mice given NVR3-778 or entecavir alone for 6 weeks had reduced serum levels of HBV DNA compared with controls or mice given peg-IFN. The largest reduction was observed in mice given NVR3-778 + peg-IFN; in all mice in this group, the serum level of HBV DNA was below the limit of quantification. NVR3-778 and peg-IFN, but not entecavir, also reduced serum level of HBV RNA. The largest effect was obtained in the NVR3-778 + peg-IFN group, in which serum level of HBV RNA was below the limit of quantification. Levels of HB surface antigen and HB e antigen were reduced significantly in only the groups that received peg-IFN. Levels of covalently closed circular DNA did not differ significantly among groups. NVR3-778 was not associated with any significant changes in level of alanine aminotransferase, the ER stress response, or IFN-stimulated genes. CONCLUSIONS: NVR3-778 has high antiviral activity in mice with humanized livers and stable HBV infection, reducing levels of serum HBV DNA and HBV RNA. Entecavir reduced levels of serum HBV DNA, but had no effect on HBV RNA. The combination of NVR3-778 and peg-IFN prevented viral replication and HBV RNA particle production to a greater extent than each compound alone or entecavir.


Asunto(s)
Antivirales/farmacología , Guanina/análogos & derivados , Virus de la Hepatitis B/efectos de los fármacos , Hepatitis B/tratamiento farmacológico , Hepatocitos/efectos de los fármacos , Interferón-alfa/farmacología , Polietilenglicoles/farmacología , Activador de Plasminógeno de Tipo Uroquinasa/genética , Alanina Transaminasa/sangre , Animales , ADN Viral/genética , Modelos Animales de Enfermedad , Quimioterapia Combinada , Estrés del Retículo Endoplásmico/efectos de los fármacos , Genotipo , Guanina/farmacología , Hepatitis B/diagnóstico , Hepatitis B/virología , Antígenos e de la Hepatitis B/sangre , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/crecimiento & desarrollo , Hepatocitos/trasplante , Hepatocitos/virología , Humanos , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Ratones SCID , Ratones Transgénicos , Fenotipo , ARN Viral/genética , Proteínas Recombinantes/farmacología , Albúmina Sérica Humana/metabolismo , Factores de Tiempo , Carga Viral
10.
Bioorg Med Chem Lett ; 29(16): 2405-2409, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31227344

RESUMEN

The HBV core protein has multiple essential functions in the HBV life cycle to enable chronic HBV infection. The core protein oligomerizes to form the viral capsid, and modulation of the HBV capsid assembly process has shown clinical efficacy in early clinical trials. Herein is described the SAR exploration of NVR 3-778, the first clinical compound in the sulfonyl carboxamide class.


Asunto(s)
Antivirales/farmacología , Benzamidas/farmacología , Proteínas de la Cápside/antagonistas & inhibidores , Virus de la Hepatitis B/efectos de los fármacos , Piperidinas/farmacología , Antivirales/síntesis química , Antivirales/química , Benzamidas/síntesis química , Benzamidas/química , Proteínas de la Cápside/metabolismo , Relación Dosis-Respuesta a Droga , Virus de la Hepatitis B/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Piperidinas/síntesis química , Piperidinas/química , Relación Estructura-Actividad , Ensamble de Virus/efectos de los fármacos
11.
Proc Natl Acad Sci U S A ; 112(49): 15196-201, 2015 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-26598693

RESUMEN

The hepatitis B virus (HBV) core protein is essential for HBV replication and an important target for antiviral drug discovery. We report the first, to our knowledge, high-resolution crystal structure of an antiviral compound bound to the HBV core protein. The compound NVR-010-001-E2 can induce assembly of the HBV core wild-type and Y132A mutant proteins and thermostabilize the proteins with a Tm increase of more than 10 °C. NVR-010-001-E2 binds at the dimer-dimer interface of the core proteins, forms a new interaction surface promoting protein-protein interaction, induces protein assembly, and increases stability. The impact of naturally occurring core protein mutations on antiviral activity correlates with NVR-010-001-E2 binding interactions determined by crystallography. The crystal structure provides understanding of a drug efficacy mechanism related to the induction and stabilization of protein-protein interactions and enables structure-guided design to improve antiviral potency and drug-like properties.


Asunto(s)
Antivirales/química , Virus de la Hepatitis B/fisiología , Proteínas del Núcleo Viral/metabolismo , Replicación Viral/efectos de los fármacos , Antivirales/metabolismo , Antivirales/farmacología , Cristalografía por Rayos X , Conformación Proteica
12.
Artículo en Inglés | MEDLINE | ID: mdl-28559265

RESUMEN

The hepatitis B virus (HBV) core protein serves multiple essential functions in the viral life cycle, and antiviral agents that target the core protein are being developed. Capsid assembly modulators (CAMs) are compounds that target core and misdirect capsid assembly, resulting in the suppression of HBV replication and virion production. Besides HBV DNA, circulating HBV RNA has been detected in patient serum and can be associated with the treatment response. Here we studied the effect of HBV CAMs on the production of extracellular HBV RNA using infected HepaRG cells and primary human hepatocytes. Representative compounds from the sulfonamide carboxamide and heteroaryldihydropyrimidine series of CAMs were evaluated and compared to nucleos(t)ide analogs as inhibitors of the viral polymerase. The results showed that CAMs blocked extracellular HBV RNA with efficiencies similar to those with which they blocked pregenomic RNA (pgRNA) encapsidation, HBV DNA replication, and Dane particle production. Nucleos(t)ide analogs inhibited viral replication and virion production but not encapsidation or production of extracellular HBV RNA. Profiling of HBV RNA from both culture supernatants and patient serum showed that extracellular viral RNA consisted of pgRNA and spliced pgRNA variants with an internal deletion(s) but still retained the sequences at both the 5' and 3' ends. Similar variants were detected in the supernatants of infected cells with and without nucleos(t)ide analog treatment. Overall, our data demonstrate that HBV CAMs represent direct antiviral agents with a profile differentiated from that of nucleos(t)ide analogs, including the inhibition of extracellular pgRNA and spliced pgRNA.


Asunto(s)
Antivirales/farmacología , Proteínas de la Cápside/metabolismo , Virus de la Hepatitis B/efectos de los fármacos , Proteínas de la Nucleocápside/metabolismo , Ensamble de Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Línea Celular , ADN Viral/sangre , ADN Polimerasa Dirigida por ADN/metabolismo , Virus de la Hepatitis B/crecimiento & desarrollo , Hepatocitos/virología , Humanos , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , ARN Viral/sangre , Sulfonamidas/farmacología , Proteínas del Núcleo Viral/metabolismo
13.
Antimicrob Agents Chemother ; 58(11): 6861-9, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25182647

RESUMEN

Resistance to the 2'-F-2'-C-methylguanosine monophosphate nucleotide hepatitis C virus (HCV) inhibitors PSI-352938 and PSI-353661 was associated with a combination of amino acid changes (changes of S to G at position 15 [S15G], C223H, and V321I) within the genotype 2a nonstructural protein 5B (NS5B), an RNA-dependent RNA polymerase. To understand the role of these residues in viral replication, we examined the effects of single and multiple point mutations on replication fitness and inhibition by a series of nucleotide analog inhibitors. An acidic residue at position 15 reduced replicon fitness, consistent with its proximity to the RNA template. A change of the residue at position 223 to an acidic or large residue reduced replicon fitness, consistent with its proposed proximity to the incoming nucleoside triphosphate (NTP). A change of the residue at position 321 to a charged residue was not tolerated, consistent with its position within a hydrophobic cavity. This triple resistance mutation was specific to both genotype 2a virus and 2'-F-2'-C-methylguanosine inhibitors. A crystal structure of the NS5B S15G/C223H/V321I mutant of the JFH-1 isolate exhibited rearrangement to a conformation potentially consistent with short primer-template RNA binding, which could suggest a mechanism of resistance accomplished through a change in the NS5B conformation, which was better tolerated by genotype 2a virus than by viruses of other genotypes.


Asunto(s)
Farmacorresistencia Viral/genética , Hepacivirus/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/ultraestructura , Replicación Viral/genética , Antivirales/farmacología , Cristalografía por Rayos X , Óxidos P-Cíclicos/farmacología , Guanosina Monofosfato/análogos & derivados , Guanosina Monofosfato/farmacología , Hepacivirus/efectos de los fármacos , Hepacivirus/crecimiento & desarrollo , Humanos , Nucleósidos/farmacología , Estructura Terciaria de Proteína , ARN Viral/genética , Proteínas de Unión al ARN/genética
14.
Viruses ; 16(3)2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38543689

RESUMEN

HBV RNA destabilizers are a class of small-molecule compounds that target the noncanonical poly(A) RNA polymerases PAPD5 and PAPD7, resulting in HBV RNA degradation and the suppression of viral proteins including the hepatitis B surface antigen (HBsAg). AB-161 is a next-generation HBV RNA destabilizer with potent antiviral activity, inhibiting HBsAg expressed from cccDNA and integrated HBV DNA in HBV cell-based models. AB-161 exhibits broad HBV genotype coverage, maintains activity against variants resistant to nucleoside analogs, and shows additive effects on HBV replication when combined with other classes of HBV inhibitors. In AAV-HBV-transduced mice, the dose-dependent reduction of HBsAg correlated with concentrations of AB-161 in the liver reaching above its effective concentration mediating 90% inhibition (EC90), compared to concentrations in plasma which were substantially below its EC90, indicating that high liver exposure drives antiviral activities. In preclinical 13-week safety studies, minor non-adverse delays in sensory nerve conductance velocity were noted in the high-dose groups in rats and dogs. However, all nerve conduction metrics remained within physiologically normal ranges, with no neurobehavioral or histopathological findings. Despite the improved neurotoxicity profile, microscopic findings associated with male reproductive toxicity were detected in dogs, which subsequently led to the discontinuation of AB-161's clinical development.


Asunto(s)
Complejos de Coordinación , Virus de la Hepatitis B , Hepatitis B Crónica , Naftalenosulfonatos , Masculino , Ratones , Ratas , Animales , Perros , Virus de la Hepatitis B/fisiología , Antígenos de Superficie de la Hepatitis B/genética , ARN Viral , ARN Mensajero , Antivirales/farmacología , Antivirales/uso terapéutico , ADN Viral/genética , Hepatitis B Crónica/tratamiento farmacológico , ADN Circular
15.
ACS Infect Dis ; 10(5): 1780-1792, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38651692

RESUMEN

The recent COVID-19 pandemic underscored the limitations of currently available direct-acting antiviral treatments against acute respiratory RNA-viral infections and stimulated major research initiatives targeting anticoronavirus agents. Two novel nsp5 protease (MPro) inhibitors have been approved, nirmatrelvir and ensitrelvir, along with two existing nucleos(t)ide analogues repurposed as nsp12 polymerase inhibitors, remdesivir and molnupiravir, but a need still exists for therapies with improved potency and systemic exposure with oral dosing, better metabolic stability, and reduced resistance and toxicity risks. Herein, we summarize our research toward identifying nsp12 inhibitors that led to nucleoside analogues 10e and 10n, which showed favorable pan-coronavirus activity in cell-infection screens, were metabolized to active triphosphate nucleotides in cell-incubation studies, and demonstrated target (nsp12) engagement in biochemical assays.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , Nucleósidos , SARS-CoV-2 , Antivirales/farmacología , Antivirales/química , SARS-CoV-2/efectos de los fármacos , Humanos , Nucleósidos/farmacología , Nucleósidos/química , Animales , Descubrimiento de Drogas , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Chlorocebus aethiops , Células Vero , COVID-19/virología , ARN Polimerasa Dependiente de ARN de Coronavirus
16.
J Virol ; 86(12): 6503-11, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22496223

RESUMEN

The replication of the hepatitis C viral (HCV) genome is accomplished by the NS5B RNA-dependent RNA polymerase (RdRp), for which mechanistic understanding and structure-guided drug design efforts have been hampered by its propensity to crystallize in a closed, polymerization-incompetent state. The removal of an autoinhibitory ß-hairpin loop from genotype 2a HCV NS5B increases de novo RNA synthesis by >100-fold, promotes RNA binding, and facilitated the determination of the first crystallographic structures of HCV polymerase in complex with RNA primer-template pairs. These crystal structures demonstrate the structural realignment required for primer-template recognition and elongation, provide new insights into HCV RNA synthesis at the molecular level, and may prove useful in the structure-based design of novel antiviral compounds. Additionally, our approach for obtaining the RNA primer-template-bound structure of HCV polymerase may be generally applicable to solving RNA-bound complexes for other viral RdRps that contain similar regulatory ß-hairpin loops, including bovine viral diarrhea virus, dengue virus, and West Nile virus.


Asunto(s)
Hepacivirus/enzimología , Hepacivirus/genética , ARN/genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Línea Celular , Cristalización , Replicación del ADN , Hepacivirus/química , Hepatitis C/virología , Humanos , Modelos Moleculares , Estructura Secundaria de Proteína , Moldes Genéticos , Proteínas no Estructurales Virales/genética
17.
Antimicrob Agents Chemother ; 56(6): 3359-68, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22430955

RESUMEN

PSI-7977, a prodrug of 2'-F-2'-C-methyluridine monophosphate, is the purified diastereoisomer of PSI-7851 and is currently being investigated in phase 3 clinical trials for the treatment of hepatitis C. In this study, we profiled the activity of PSI-7977 and its ability to select for resistance using a number of different replicon cells. Results showed that PSI-7977 was active against genotype (GT) 1a, 1b, and 2a (strain JFH-1) replicons and chimeric replicons containing GT 2a (strain J6), 2b, and 3a NS5B polymerase. Cross-resistance studies using GT 1b replicons confirmed that the S282T change conferred resistance to PSI-7977. Subsequently, we evaluated the ability of PSI-7977 to select for resistance using GT 1a, 1b, and 2a (JFH-1) replicon cells. S282T was the common mutation selected among all three genotypes, but while it conferred resistance to PSI-7977 in GT 1a and 1b, JFH-1 GT 2a S282T showed only a very modest shift in 50% effective concentration (EC(50)) for PSI-7977. Sequence analysis of the JFH-1 NS5B region indicated that additional amino acid changes were selected both prior to and after the emergence of S282T. These include T179A, M289L, I293L, M434T, and H479P. Residues 179, 289, and 293 are located within the finger and palm domains, while 434 and 479 are located on the surface of the thumb domain. Data from the JFH-1 replicon variants showed that amino acid changes within the finger and palm domains together with S282T were required to confer resistance to PSI-7977, while the mutations on the thumb domain serve to enhance the replication capacity of the S282T replicons.


Asunto(s)
Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Hepacivirus/genética , Uridina Monofosfato/análogos & derivados , Línea Celular , Genotipo , Humanos , Replicón/efectos de los fármacos , Replicón/genética , Sofosbuvir , Uridina Monofosfato/farmacología , Replicación Viral/efectos de los fármacos
18.
Antimicrob Agents Chemother ; 56(7): 3767-75, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22526308

RESUMEN

PSI-352938 is a novel cyclic phosphate prodrug of ß-D-2'-deoxy-2'-α-fluoro-2'-ß-C-methylguanosine-5'-monophosphate with potent anti-HCV activity. In order to inhibit the NS5B RNA-dependent RNA polymerase, PSI-352938 must be metabolized to the active triphosphate form, PSI-352666. During in vitro incubations with PSI-352938, significantly larger amounts of PSI-352666 were formed in primary hepatocytes than in clone A hepatitis C virus (HCV) replicon cells. Metabolism and biochemical assays were performed to define the molecular mechanism of PSI-352938 activation. The first step, removal of the isopropyl group on the 3',5'-cyclic phosphate moiety, was found to be cytochrome P450 (CYP) 3A4 dependent, with other CYP isoforms unable to catalyze the reaction. The second step, opening of the cyclic phosphate ring, was catalyzed by phosphodiesterases (PDEs) 2A1, 5A, 9A, and 11A4, all known to be expressed in the liver. The role of these enzymes in the activation of PSI-352938 was confirmed in primary human hepatocytes, where prodrug activation was reduced by inhibitors of CYP3A4 and PDEs. The third step, removal of the O(6)-ethyl group on the nucleobase, was shown to be catalyzed by adenosine deaminase-like protein 1. The resulting monophosphate was consecutively phosphorylated to the diphosphate and to the triphosphate PSI-352666 by guanylate kinase 1 and nucleoside diphosphate kinase, respectively. In addition, formation of nucleoside metabolites was observed in primary hepatocytes, and ecto-5'-nucleotidase was able to dephosphorylate the monophosphate metabolites. Since CYP3A4 is highly expressed in the liver, the CYP3A4-dependent metabolism of PSI-352938 makes it an effective liver-targeted prodrug, in part accounting for the potent antiviral activity observed clinically.


Asunto(s)
Antivirales/metabolismo , Óxidos P-Cíclicos/metabolismo , Hepacivirus/efectos de los fármacos , Nucleósidos/metabolismo , Células Cultivadas , Citocromo P-450 CYP3A/metabolismo , Guanilato-Quinasas/metabolismo , Hepatocitos/metabolismo , Humanos , Nucleósido-Difosfato Quinasa/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo
19.
J Virol ; 85(23): 12334-42, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21957306

RESUMEN

PSI-352938, a cyclic phosphate nucleotide, and PSI-353661, a phosphoramidate nucleotide, are prodrugs of ß-D-2'-deoxy-2'-α-fluoro-2'-ß-C-methylguanosine-5'-monophosphate. Both compounds are metabolized to the same active 5'-triphosphate, PSI-352666, which serves as an alternative substrate inhibitor of the NS5B RNA-dependent RNA polymerase during HCV replication. PSI-352938 and PSI-353661 retained full activity against replicons containing the S282T substitution, which confers resistance to certain 2'-substituted nucleoside/nucleotide analogs. PSI-352666 was also similarly active against both wild-type and S282T NS5B polymerases. In order to identify mutations that confer resistance to these compounds, in vitro selection studies were performed using HCV replicon cells. While no resistant genotype 1a or 1b replicons could be selected, cells containing genotype 2a JFH-1 replicons cultured in the presence of PSI-352938 or PSI-353661 developed resistance to both compounds. Sequencing of the NS5B region identified a number of amino acid changes, including S15G, R222Q, C223Y/H, L320I, and V321I. Phenotypic evaluation of these mutations indicated that single amino acid changes were not sufficient to significantly reduce the activity of PSI-352938 and PSI-353661. Instead, a combination of three amino acid changes, S15G/C223H/V321I, was required to confer a high level of resistance. No cross-resistance exists between the 2'-F-2'-C-methylguanosine prodrugs and other classes of HCV inhibitors, including 2'-modified nucleoside/-tide analogs such as PSI-6130, PSI-7977, INX-08189, and IDX-184. Finally, we determined that in genotype 1b replicons, the C223Y/H mutation failed to support replication, and although the A15G/C223H/V321I triple mutation did confer resistance to PSI-352938 and PSI-353661, this mutant replicated at only about 10% efficiency compared to the wild type.


Asunto(s)
Óxidos P-Cíclicos/farmacología , Farmacorresistencia Viral , Guanosina Monofosfato/análogos & derivados , Hepacivirus/efectos de los fármacos , Hepacivirus/genética , Mutación/genética , Nucleósidos/farmacología , ARN Viral/genética , Replicón/efectos de los fármacos , Antivirales/farmacología , Guanosina Monofosfato/farmacología , Hepatitis C/tratamiento farmacológico , Hepatitis C/genética , Hepatitis C/virología , Humanos , Fenotipo , Profármacos/farmacología , Conformación Proteica , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/metabolismo , Replicón/genética , Replicación Viral/efectos de los fármacos , Replicación Viral/genética
20.
Bioorg Med Chem Lett ; 22(8): 2938-42, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22425564

RESUMEN

The HCV non-structural protein NS5A has been established as a viable target for the development of direct acting antiviral therapy. From computational modeling studies strong intra-molecular hydrogen bonds were found to be a common structural moiety within known NS5A inhibitors that have low pico-molar replicon potency. Efforts to reproduce these γ-turn-like substructures provided a novel NS5A inhibitor based on a fluoro-olefin isostere. This fluoro-olefin containing inhibitor exhibited picomolar activity (EC(50)=79 pM) against HCV genotype 1b replicon without measurable cytotoxicity. This level of activity is comparable to the natural peptide-based inhibitors currently under clinic evaluation, and demonstrates that a peptidomimetic approach can serve as a useful strategy to produce potent and structurally unique inhibitors of HCV NS5A.


Asunto(s)
Alquenos/química , Flúor/química , Hepacivirus/efectos de los fármacos , Peptidomiméticos/química , Peptidomiméticos/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Alquenos/farmacología , Flúor/farmacología , Humanos , Enlace de Hidrógeno , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA