Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 544
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(12): e2214225120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36917668

RESUMEN

A murine papillomavirus, MmuPV1, infects both cutaneous and mucosal epithelia of laboratory mice and can be used to model high-risk human papillomavirus (HPV) infection and HPV-associated disease. We have shown that estrogen exacerbates papillomavirus-induced cervical disease in HPV-transgenic mice. We have also previously identified stress keratin 17 (K17) as a host factor that supports MmuPV1-induced cutaneous disease. Here, we sought to test the role of estrogen and K17 in MmuPV1 infection and associated disease in the female reproductive tract. We experimentally infected wild-type and K17 knockout (K17KO) mice with MmuPV1 in the female reproductive tract in the presence or absence of exogenous estrogen for 6 mon. We observed that a significantly higher percentage of K17KO mice cleared the virus as opposed to wild-type mice. In estrogen-treated wild-type mice, the MmuPV1 viral copy number was significantly higher compared to untreated mice by as early as 2 wk postinfection, suggesting that estrogen may help facilitate MmuPV1 infection and/or establishment. Consistent with this, viral clearance was not observed in either wild-type or K17KO mice when treated with estrogen. Furthermore, neoplastic disease progression and cervical carcinogenesis were supported by the presence of K17 and exacerbated by estrogen treatment. Subsequent analyses indicated that estrogen treatment induces a systemic immunosuppressive state in MmuPV1-infected animals and that both estrogen and K17 modulate the local intratumoral immune microenvironment within MmuPV1-induced neoplastic lesions. Collectively, these findings suggest that estrogen and K17 act at multiple stages of papillomavirus-induced disease at least in part via immunomodulatory mechanisms.


Asunto(s)
Infecciones por Papillomavirus , Ratones , Femenino , Humanos , Animales , Infecciones por Papillomavirus/genética , Queratina-17 , Ratones Transgénicos , Inmunidad , Papillomaviridae/genética , Estrógenos
2.
Proc Natl Acad Sci U S A ; 120(14): e2216700120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36989302

RESUMEN

Chromosome segregation during mitosis is highly regulated to ensure production of genetically identical progeny. Recurrent mitotic errors cause chromosomal instability (CIN), a hallmark of tumors. The E6 and E7 oncoproteins of high-risk human papillomavirus (HPV), which causes cervical, anal, and head and neck cancers (HNC), cause mitotic defects consistent with CIN in models of anogenital cancers, but this has not been studied in the context of HNC. Here, we show that HPV16 induces a specific type of CIN in patient HNC tumors, patient-derived xenografts, and cell lines, which is due to defects in chromosome congression. These defects are specifically induced by the HPV16 oncogene E6 rather than E7. We show that HPV16 E6 expression causes degradation of the mitotic kinesin CENP-E, whose depletion produces chromosomes that are chronically misaligned near spindle poles (polar chromosomes) and fail to congress. Though the canonical oncogenic role of E6 is the degradation of the tumor suppressor p53, CENP-E degradation and polar chromosomes occur independently of p53. Instead, E6 directs CENP-E degradation in a proteasome-dependent manner via the E6-associated ubiquitin protein ligase E6AP/UBE3A. This study reveals a mechanism by which HPV induces CIN, which may impact HPV-mediated tumor initiation, progression, and therapeutic response.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Humanos , Inestabilidad Cromosómica , Cromosomas/metabolismo , Papillomavirus Humano 16/genética , Cinesinas/genética , Cinesinas/metabolismo , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
3.
J Virol ; 98(7): e0017424, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38869286

RESUMEN

Epidermodysplasia verruciformis (EV) is a rare genetic skin disorder that is characterized by the development of papillomavirus-induced skin lesions that can progress to squamous cell carcinoma (SCC). Certain high-risk, cutaneous ß-genus human papillomaviruses (ß-HPVs), in particular HPV5 and HPV8, are associated with inducing EV in individuals who have a homozygous mutation in one of three genes tied to this disease: EVER1, EVER2, or CIB1. EVER1 and EVER2 are also known as TMC6 and TMC8, respectively. Little is known about the biochemical activities of EVER gene products or their roles in facilitating EV in conjunction with ß-HPV infection. To investigate the potential effect of EVER genes on papillomavirus infection, we pursued in vivo infection studies by infecting Ever2-null mice with mouse papillomavirus (MmuPV1). MmuPV1 shares characteristics with ß-HPVs including similar genome organization, shared molecular activities of their early, E6 and E7, oncoproteins, the lack of a viral E5 gene, and the capacity to cause skin lesions that can progress to SCC. MmuPV1 infections were conducted both in the presence and absence of UVB irradiation, which is known to increase the risk of MmuPV1-induced pathogenesis. Infection with MmuPV1 induced skin lesions in both wild-type and Ever2-null mice with and without UVB. Many lesions in both genotypes progressed to malignancy, and the disease severity did not differ between Ever2-null and wild-type mice. However, somewhat surprisingly, lesion growth and viral transcription was decreased, and lesion regression was increased in Ever2-null mice compared with wild-type mice. These studies demonstrate that Ever2-null mice infected with MmuPV1 do not exhibit the same phenotype as human EV patients infected with ß-HPVs.IMPORTANCEHumans with homozygous mutations in the EVER2 gene develop epidermodysplasia verruciformis (EV), a disease characterized by predisposition to persistent ß-genus human papillomavirus (ß-HPV) skin infections, which can progress to skin cancer. To investigate how EVER2 confers protection from papillomaviruses, we infected the skin of homozygous Ever2-null mice with mouse papillomavirus MmuPV1. Like in humans with EV, infected Ever2-null mice developed skin lesions that could progress to cancer. Unlike in humans with EV, lesions in these Ever2-null mice grew more slowly and regressed more frequently than in wild-type mice. MmuPV1 transcription was higher in wild-type mice than in Ever2-null mice, indicating that mouse EVER2 does not confer protection from papillomaviruses. These findings suggest that there are functional differences between MmuPV1 and ß-HPVs and/or between mouse and human EVER2.


Asunto(s)
Epidermodisplasia Verruciforme , Ratones Noqueados , Infecciones por Papillomavirus , Animales , Ratones , Epidermodisplasia Verruciforme/virología , Epidermodisplasia Verruciforme/genética , Epidermodisplasia Verruciforme/patología , Infecciones por Papillomavirus/virología , Infecciones por Papillomavirus/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Papillomaviridae/genética , Papillomaviridae/patogenicidad , Betapapillomavirus/genética , Betapapillomavirus/patogenicidad , Humanos , Susceptibilidad a Enfermedades , Femenino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Neoplasias Cutáneas/virología , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/genética
4.
PLoS Pathog ; 19(4): e1011215, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37036883

RESUMEN

Human papillomaviruses (HPVs) contribute to approximately 5% of all human cancers. Species-specific barriers limit the ability to study HPV pathogenesis in animal models. Murine papillomavirus (MmuPV1) provides a powerful tool to study the roles of papillomavirus genes in pathogenesis arising from a natural infection. We previously identified Protein Tyrosine Phosphatase Non-Receptor Type 14 (PTPN14), a tumor suppressor targeted by HPV E7 proteins, as a putative cellular target of MmuPV1 E7. Here, we confirmed the MmuPV1 E7-PTPN14 interaction. Based on the published structure of the HPV18 E7/PTPN14 complex, we generated a MmuPV1 E7 mutant, E7K81S, that was defective for binding PTPN14. Wild-type (WT) and E7K81S mutant viral genomes replicated as extrachromosomal circular DNAs to comparable levels in mouse keratinocytes. E7K81S mutant virus (E7K81S MmuPV1) was generated and used to infect FoxN/Nude mice. E7K81S MmuPV1 caused neoplastic lesions at a frequency similar to that of WT MmuPV1, but the lesions arose later and were smaller than WT-induced lesions. The E7K81S MmuPV1-induced lesions also had a trend towards a less severe grade of neoplastic disease. In the lesions, E7K81S MmuPV1 supported the late (productive) stage of the viral life cycle and promoted E2F activity and cellular DNA synthesis in suprabasal epithelial cells to similar degrees as WT MmuPV1. There was a similar frequency of lateral spread of infections among mice infected with E7K81S or WT MmuPV1. Compared to WT MmuPV1-induced lesions, E7K81S MmuPV1-induced lesions had a significant expansion of cells expressing differentiation markers, Keratin 10 and Involucrin. We conclude that an intact PTPN14 binding site is necessary for MmuPV1 E7's ability to contribute to papillomavirus-induced pathogenesis and this correlates with MmuPV1 E7 causing a delay in epithelial differentiation, which is a hallmark of papillomavirus-induced neoplasia.


Asunto(s)
Neoplasias , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Enfermedades de la Piel , Animales , Humanos , Ratones , Diferenciación Celular , Ratones Desnudos , Proteínas Oncogénicas Virales/metabolismo , Papillomaviridae/genética , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Infecciones por Papillomavirus/genética , Unión Proteica , Proteínas Tirosina Fosfatasas no Receptoras/genética
5.
PLoS Med ; 21(2): e1004343, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38358949

RESUMEN

BACKGROUND: The occurrence of a range of health outcomes following myocardial infarction (MI) is unknown. Therefore, this study aimed to determine the long-term risk of major health outcomes following MI and generate sociodemographic stratified risk charts in order to inform care recommendations in the post-MI period and underpin shared decision making. METHODS AND FINDINGS: This nationwide cohort study includes all individuals aged ≥18 years admitted to one of 229 National Health Service (NHS) Trusts in England between 1 January 2008 and 31 January 2017 (final follow-up 27 March 2017). We analysed 11 non-fatal health outcomes (subsequent MI and first hospitalisation for heart failure, atrial fibrillation, cerebrovascular disease, peripheral arterial disease, severe bleeding, renal failure, diabetes mellitus, dementia, depression, and cancer) and all-cause mortality. Of the 55,619,430 population of England, 34,116,257 individuals contributing to 145,912,852 hospitalisations were included (mean age 41.7 years (standard deviation [SD 26.1]); n = 14,747,198 (44.2%) male). There were 433,361 individuals with MI (mean age 67.4 years [SD 14.4)]; n = 283,742 (65.5%) male). Following MI, all-cause mortality was the most frequent event (adjusted cumulative incidence at 9 years 37.8% (95% confidence interval [CI] [37.6,37.9]), followed by heart failure (29.6%; 95% CI [29.4,29.7]), renal failure (27.2%; 95% CI [27.0,27.4]), atrial fibrillation (22.3%; 95% CI [22.2,22.5]), severe bleeding (19.0%; 95% CI [18.8,19.1]), diabetes (17.0%; 95% CI [16.9,17.1]), cancer (13.5%; 95% CI [13.3,13.6]), cerebrovascular disease (12.5%; 95% CI [12.4,12.7]), depression (8.9%; 95% CI [8.7,9.0]), dementia (7.8%; 95% CI [7.7,7.9]), subsequent MI (7.1%; 95% CI [7.0,7.2]), and peripheral arterial disease (6.5%; 95% CI [6.4,6.6]). Compared with a risk-set matched population of 2,001,310 individuals, first hospitalisation of all non-fatal health outcomes were increased after MI, except for dementia (adjusted hazard ratio [aHR] 1.01; 95% CI [0.99,1.02];p = 0.468) and cancer (aHR 0.56; 95% CI [0.56,0.57];p < 0.001). The study includes data from secondary care only-as such diagnoses made outside of secondary care may have been missed leading to the potential underestimation of the total burden of disease following MI. CONCLUSIONS: In this study, up to a third of patients with MI developed heart failure or renal failure, 7% had another MI, and 38% died within 9 years (compared with 35% deaths among matched individuals). The incidence of all health outcomes, except dementia and cancer, was higher than expected during the normal life course without MI following adjustment for age, sex, year, and socioeconomic deprivation. Efforts targeted to prevent or limit the accrual of chronic, multisystem disease states following MI are needed and should be guided by the demographic-specific risk charts derived in this study.


Asunto(s)
Fibrilación Atrial , Trastornos Cerebrovasculares , Demencia , Diabetes Mellitus , Insuficiencia Cardíaca , Infarto del Miocardio , Neoplasias , Insuficiencia Renal , Humanos , Masculino , Adolescente , Adulto , Anciano , Femenino , Estudios de Cohortes , Fibrilación Atrial/diagnóstico , Medicina Estatal , Infarto del Miocardio/epidemiología , Insuficiencia Cardíaca/complicaciones , Evaluación de Resultado en la Atención de Salud , Insuficiencia Renal/complicaciones , Neoplasias/complicaciones
6.
PLoS Pathog ; 18(5): e1010551, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35560034

RESUMEN

Clear evidence supports a causal link between Merkel cell polyomavirus (MCPyV) and the highly aggressive human skin cancer called Merkel cell carcinoma (MCC). Integration of viral DNA into the human genome facilitates continued expression of the MCPyV small tumor (ST) and large tumor (LT) antigens in virus-positive MCCs. In MCC tumors, MCPyV LT is truncated in a manner that renders the virus unable to replicate yet preserves the LXCXE motif that facilitates its binding to and inactivation of the retinoblastoma tumor suppressor protein (pRb). We previously developed a MCPyV transgenic mouse model in which MCC tumor-derived ST and truncated LT expression were targeted to the stratified epithelium of the skin, causing epithelial hyperplasia, increased proliferation, and spontaneous tumorigenesis. We sought to determine if any of these phenotypes required the association between the truncated MCPyV LT and pRb. Mice were generated in which K14-driven MCPyV ST/LT were expressed in the context of a homozygous RbΔLXCXE knock-in allele that attenuates LT-pRb interactions through LT's LXCXE motif. We found that many of the phenotypes including tumorigenesis that develop in the K14-driven MCPyV transgenic mice were dependent upon LT's LXCXE-dependent interaction with pRb. These findings highlight the importance of the MCPyV LT-pRb interaction in an in vivo model for MCPyV-induced tumorigenesis.


Asunto(s)
Carcinoma de Células de Merkel , Poliomavirus de Células de Merkel , Infecciones por Polyomavirus , Neoplasias Cutáneas , Infecciones Tumorales por Virus , Animales , Antígenos Transformadores de Poliomavirus/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Antígenos Virales de Tumores/genética , Antígenos Virales de Tumores/metabolismo , Transformación Celular Neoplásica , Hiperplasia/patología , Células de Merkel/metabolismo , Células de Merkel/patología , Poliomavirus de Células de Merkel/genética , Ratones , Neoplasias Cutáneas/patología
7.
PLoS Pathog ; 18(10): e1010868, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36190982

RESUMEN

Differentiated epithelial cells are an important source of infectious EBV virions in human saliva, and latent Epstein-Barr virus (EBV) infection is strongly associated with the epithelial cell tumor, nasopharyngeal carcinoma (NPC). However, it has been difficult to model how EBV contributes to NPC, since EBV has not been shown to enhance proliferation of epithelial cells in monolayer culture in vitro and is not stably maintained in epithelial cells without antibiotic selection. In addition, although there are two major types of EBV (type 1 (T1) and type 2 (T2)), it is currently unknown whether T1 and T2 EBV behave differently in epithelial cells. Here we inserted a G418 resistance gene into the T2 EBV strain, AG876, allowing us to compare the phenotypes of T1 Akata virus versus T2 AG876 virus in a telomerase-immortalized normal oral keratinocyte cell line (NOKs) using a variety of different methods, including RNA-seq analysis, proliferation assays, immunoblot analyses, and air-liquid interface culture. We show that both T1 Akata virus infection and T2 AG876 virus infection of NOKs induce cellular proliferation, and inhibit spontaneous differentiation, in comparison to the uninfected cells when cells are grown without supplemental growth factors in monolayer culture. T1 EBV and T2 EBV also have a similar ability to induce epithelial-to-mesenchymal (EMT) transition and activate canonical and non-canonical NF-κB signaling in infected NOKs. In contrast to our recent results in EBV-infected lymphoblastoid cells (in which T2 EBV infection is much more lytic than T1 EBV infection), we find that NOKs infected with T1 and T2 EBV respond similarly to lytic inducing agents such as TPA treatment or differentiation. These results suggest that T1 and T2 EBV have similar phenotypes in infected epithelial cells, with both EBV types enhancing cellular proliferation and inhibiting differentiation when growth factors are limiting.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Telomerasa , Antibacterianos/metabolismo , Proliferación Celular , Herpesvirus Humano 4/metabolismo , Humanos , Queratinocitos , FN-kappa B/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Telomerasa/genética , Activación Viral
8.
Value Health ; 27(1): 51-60, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37858887

RESUMEN

OBJECTIVES: Parametric models are used to estimate the lifetime benefit of an intervention beyond the range of trial follow-up. Recent recommendations have suggested more flexible survival approaches and the use of external data when extrapolating. Both of these can be realized by using flexible parametric relative survival modeling. The overall aim of this article is to introduce and contrast various approaches for applying constraints on the long-term disease-related (excess) mortality including cure models and evaluate the consequent implications for extrapolation. METHODS: We describe flexible parametric relative survival modeling approaches. We then introduce various options for constraining the long-term excess mortality and compare the performance of each method in simulated data. These methods include fitting a standard flexible parametric relative survival model, enforcing statistical cure, and forcing the long-term excess mortality to converge to a constant. We simulate various scenarios, including where statistical cure is reasonable and where the long-term excess mortality persists. RESULTS: The compared approaches showed similar survival fits within the follow-up period. However, when extrapolating the all-cause survival beyond trial follow-up, there is variation depending on the assumption made about the long-term excess mortality. Altering the time point from which the excess mortality is constrained enables further flexibility. CONCLUSIONS: The various constraints can lead to applying explicit assumptions when extrapolating, which could lead to more plausible survival extrapolations. The inclusion of general population mortality directly into the model-building process, which is possible for all considered approaches, should be adopted more widely in survival extrapolation in health technology assessment.


Asunto(s)
Análisis de Supervivencia , Humanos
9.
Value Health ; 27(3): 347-355, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38154594

RESUMEN

OBJECTIVES: A long-term, constant, protective treatment effect is a strong assumption when extrapolating survival beyond clinical trial follow-up; hence, sensitivity to treatment effect waning is commonly assessed for economic evaluations. Forcing a hazard ratio (HR) to 1 does not necessarily estimate loss of individual-level treatment effect accurately because of HR selection bias. A simulation study was designed to explore the behavior of marginal HRs under a waning conditional (individual-level) treatment effect and demonstrate bias in forcing a marginal HR to 1 when the estimand is "survival difference with individual-level waning". METHODS: Data were simulated under 4 parameter combinations (varying prognostic strength of heterogeneity and treatment effect). Time-varying marginal HRs were estimated in scenarios where the true conditional HR attenuated to 1. Restricted mean survival time differences, estimated having constrained the marginal HR to 1, were compared with true values to assess bias induced by marginal constraints. RESULTS: Under loss of conditional treatment effect, the marginal HR took a value >1 because of covariate imbalances. Constraining this value to 1 lead to restricted mean survival time difference bias of up to 0.8 years (57% increase). Inflation of effect size estimates also increased with the magnitude of initial protective treatment effect. CONCLUSIONS: Important differences exist between survival extrapolations assuming marginal versus conditional treatment effect waning. When a marginal HR is constrained to 1 to assess efficacy under individual-level treatment effect waning, the survival benefits associated with the new treatment will be overestimated, and incremental cost-effectiveness ratios will be underestimated.


Asunto(s)
Modelos de Riesgos Proporcionales , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto
10.
Acta Oncol ; 63: 179-191, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597666

RESUMEN

BACKGROUND: Since the early 2000s, overall and site-specific cancer survival have improved substantially in the Nordic countries. We evaluated whether the improvements have been similar across countries, major cancer types, and age groups. MATERIAL AND METHODS: Using population-based data from the five Nordic cancer registries recorded in the NORDCAN database, we included a cohort of 1,525,854 men and 1,378,470 women diagnosed with cancer (except non-melanoma skin cancer) during 2002-2021, and followed for death until 2021. We estimated 5-year relative survival (RS) in 5-year calendar periods, and percentage points (pp) differences in 5-year RS from 2002-2006 until 2017-2021. Separate analyses were performed for eight cancer sites (i.e. colorectum, pancreas, lung, breast, cervix uteri, kidney, prostate, and melanoma of skin). RESULTS: Five-year RS improved across nearly all cancer sites in all countries (except Iceland), with absolute differences across age groups ranging from 1 to 21 pp (all cancer sites), 2 to 20 pp (colorectum), -1 to 36 pp (pancreas), 2 to 28 pp (lung), 0 to 9 pp (breast), -11 to 26 pp (cervix uteri), 2 to 44 pp (kidney), -2 to 23 pp (prostate) and -3 to 30 pp (skin melanoma). The oldest patients (80-89 years) exhibited lower survival across all countries and sites, although with varying improvements over time. INTERPRETATION: Nordic cancer patients have generally experienced substantial improvements in cancer survival during the last two decades, including major cancer sites and age groups. Although survival has improved over time, older patients remain at a lower cancer survival compared to younger patients.


Asunto(s)
Melanoma , Neoplasias , Masculino , Humanos , Femenino , Melanoma/epidemiología , Melanoma/terapia , Tasa de Supervivencia , Factores de Riesgo , Estudios de Seguimiento , Países Escandinavos y Nórdicos/epidemiología , Neoplasias/epidemiología , Neoplasias/terapia , Neoplasias/diagnóstico , Sistema de Registros , Análisis de Supervivencia , Incidencia
11.
Am J Otolaryngol ; 45(2): 104178, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38101129

RESUMEN

PURPOSE: Meniere's Disease is a condition known for its recurrent vertigo, fluctuating sensorineural hearing loss, aural fullness, and tinnitus. Previous studies have demonstrated significant influence of placebo treatments. Our objective was to quantify the magnitude of the placebo effect in randomized controlled trials for Meniere's Disease. MATERIALS AND METHODS: A systematic review was performed by searching PubMed, SCOPUS, CINAHL, and Cochrane databases from inception through September 27, 2022. Data extraction, quality rating, and risk of bias assessment were performed by two independent reviewers. A meta-analysis of mean differences with 95 % confidence interval, weighted summary proportions, and proportion differences were calculated using random and fixed effects models. RESULTS: A total of 15 studies (N = 892) were included in the review. Significant improvement was seen in the functional level scores of the pooled placebo groups, with a mean difference of -0.6 points, (95%CI: -1.2 to -0.1). There was no difference in pure tone audiometry, speech discrimination score, or vertigo frequency at 1 and 3 months for the placebo group. Patient-reported vertigo episodes were improved in 52.5 % (95%CI: 39.2 to 65.5) of the placebo group and was significantly less than the pooled experimental group (90.1 %, 95%CI: 39.2 to 65.5, p < 0.001). CONCLUSIONS: The placebo effect in Meniere's Disease trials is associated with some symptomatic improvement in subjective outcomes, such as patient reported vertigo episodes. However, the clinical significance is questionable across other outcomes measures, especially when analyzing objective data. The extent and strength of the placebo effect continues to be a hurdle in the search for better treatment options.


Asunto(s)
Enfermedad de Meniere , Acúfeno , Humanos , Enfermedad de Meniere/tratamiento farmacológico , Efecto Placebo , Ensayos Clínicos Controlados Aleatorios como Asunto , Vértigo/etiología , Vértigo/tratamiento farmacológico , Acúfeno/etiología , Acúfeno/terapia
12.
Br J Cancer ; 129(5): 819-828, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37433898

RESUMEN

BACKGROUND: Routine reporting of cancer patient survival is important, both to monitor the effectiveness of health care and to inform about prognosis following a cancer diagnosis. A range of different survival measures exist, each serving different purposes and targeting different audiences. It is important that routine publications expand on current practice and provide estimates on a wider range of survival measures. We examine the feasibility of automated production of such statistics. METHODS: We used data on 23 cancer sites obtained from the Cancer Registry of Norway (CRN). We propose an automated way of estimating flexible parametric relative survival models and calculating estimates of net survival, crude probabilities, and loss in life expectancy across many cancer sites and subgroups of patients. RESULTS: For 21 of 23 cancer sites, we were able to estimate survival models without assuming proportional hazards. Reliable estimates of all desired measures were obtained for all cancer sites. DISCUSSION: It may be challenging to implement new survival measures in routine publications as it can require the application of modeling techniques. We propose a way of automating the production of such statistics and show that we can obtain reliable estimates across a range of measures and subgroups of patients.


Asunto(s)
Neoplasias , Humanos , Análisis de Supervivencia , Estudios de Factibilidad , Neoplasias/terapia , Probabilidad , Algoritmos
13.
J Virol ; 96(13): e0056622, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35703545

RESUMEN

The family of human papillomaviruses (HPV) includes over 400 genotypes. Genus α genotypes generally infect the anogenital mucosa, and a subset of these HPV are a necessary, but not sufficient, cause of cervical cancer. Of the 13 high-risk (HR) and 11 intermediate-risk (IR) HPV associated with cervical cancer, genotypes 16 and 18 cause 50% and 20% of cases, respectively, whereas HPV16 dominates in other anogenital and oropharyngeal cancers. A plethora of ßHPVs are associated with cutaneous squamous cell carcinoma (CSCC), especially in sun-exposed skin sites of epidermodysplasia verruciformis (EV), AIDS, and immunosuppressed patients. Licensed L1 virus-like particle (VLP) vaccines, such as Gardasil 9, target a subset of αHPV but no ßHPV. To comprehensively target both α- and ßHPVs, we developed a two-component VLP vaccine, RG2-VLP, in which L2 protective epitopes derived from a conserved αHPV epitope (amino acids 17 to 36 of HPV16 L2) and a consensus ßHPV sequence in the same region are displayed within the DE loop of HPV16 and HPV18 L1 VLP, respectively. Unlike vaccination with Gardasil 9, vaccination of wild-type and EV model mice (Tmc6Δ/Δ or Tmc8Δ/Δ) with RG2-VLP induced robust L2-specific antibody titers and protected against ß-type HPV5. RG2-VLP protected rabbits against 17 αHPV, including those not covered by Gardasil 9. HPV16- and HPV18-specific neutralizing antibody responses were similar between RG2-VLP- and Gardasil 9-vaccinated animals. However, only transfer of RG2-VLP antiserum effectively protected naive mice from challenge with all ßHPVs tested. Taken together, these observations suggest RG2-VLP's potential as a broad-spectrum vaccine to prevent αHPV-driven anogenital, oropharyngeal, and ßHPV-associated cutaneous cancers. IMPORTANCE Licensed preventive HPV vaccines are composed of VLPs derived by expression of major capsid protein L1. They confer protection generally restricted to infection by the αHPVs targeted by the up-to-9-valent vaccine, and their associated anogenital cancers and genital warts, but do not target ßHPV that are associated with CSCC in EV and immunocompromised patients. We describe the development of a two-antigen vaccine protective in animal models against known oncogenic αHPVs as well as diverse ßHPVs by incorporation into HPV16 and HPV18 L1 VLP of 20-amino-acid conserved protective epitopes derived from minor capsid protein L2.


Asunto(s)
Alphapapillomavirus , Carcinoma de Células Escamosas , Papillomaviridae , Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Vacunas de Partículas Similares a Virus , Alphapapillomavirus/inmunología , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Proteínas de la Cápside/inmunología , Carcinoma de Células Escamosas/prevención & control , Epítopos/inmunología , Femenino , Papillomavirus Humano 16/inmunología , Humanos , Ratones , Ratones Endogámicos BALB C , Papillomaviridae/inmunología , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/inmunología , Conejos , Vacunas de Partículas Similares a Virus/inmunología
14.
PLoS Pathog ; 17(8): e1009812, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34343212

RESUMEN

MmuPV1 is a useful model for studying papillomavirus-induced tumorigenesis. We used RNA-seq to look for chimeric RNAs that map to both MmuPV1 and host genomes. In tumor tissues, a higher proportion of total viral reads were virus-host chimeric junction reads (CJRs) (1.9‰ - 7‰) than in tumor-free tissues (0.6‰ - 1.3‰): most CJRs mapped to the viral E2/E4 region. Although most of the MmuPV1 integration sites were mapped to intergenic regions and introns throughout the mouse genome, integrations were seen more than once in several genes: Malat1, Krt1, Krt10, Fabp5, Pard3, and Grip1; these data were confirmed by rapid amplification of cDNA ends (RACE)-Single Molecule Real-Time (SMRT)-seq or targeted DNA-seq. Microhomology sequences were frequently seen at host-virus DNA junctions. MmuPV1 infection and integration affected the expression of host genes. We found that factors for DNA double-stranded break repair and microhomology-mediated end-joining (MMEJ), such as H2ax, Fen1, DNA polymerase Polθ, Cdk1, and Plk1, exhibited a step-wise increase and Mdc1 a decrease in expression in MmuPV1-infected tissues and MmuPV1 tumors relative to normal tissues. Increased expression of mitotic kinases CDK1 and PLK1 appears to be correlated with CtIP phosphorylation in MmuPV1 tumors, suggesting a role for MMEJ-mediated DNA joining in the MmuPV1 integration events that are associated with MmuPV1-induced progression of tumors.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Enzimas Reparadoras del ADN/metabolismo , ADN Viral/genética , Queratinocitos/metabolismo , Papiloma/genética , Papillomaviridae/genética , Infecciones por Papillomavirus/genética , Animales , Animales Recién Nacidos , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/genética , Femenino , Genoma Viral , Recombinación Homóloga , Queratinocitos/virología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Papiloma/virología , Infecciones por Papillomavirus/metabolismo , Infecciones por Papillomavirus/virología , RNA-Seq
15.
PLoS Pathog ; 17(11): e1010045, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34748616

RESUMEN

Epstein-Barr virus (EBV) is a human herpesvirus that causes infectious mononucleosis and contributes to both B-cell and epithelial-cell malignancies. EBV-infected epithelial cell tumors, including nasopharyngeal carcinoma (NPC), are largely composed of latently infected cells, but the mechanism(s) maintaining viral latency are poorly understood. Expression of the EBV BZLF1 (Z) and BRLF1 (R) encoded immediate-early (IE) proteins induces lytic infection, and these IE proteins activate each other's promoters. ΔNp63α (a p53 family member) is required for proliferation and survival of basal epithelial cells and is over-expressed in NPC tumors. Here we show that ΔNp63α promotes EBV latency by inhibiting activation of the BZLF1 IE promoter (Zp). Furthermore, we find that another p63 gene splice variant, TAp63α, which is expressed in some Burkitt and diffuse large B cell lymphomas, also represses EBV lytic reactivation. We demonstrate that ΔNp63α inhibits the Z promoter indirectly by preventing the ability of other transcription factors, including the viral IE R protein and the cellular KLF4 protein, to activate Zp. Mechanistically, we show that ΔNp63α promotes viral latency in undifferentiated epithelial cells both by enhancing expression of a known Zp repressor protein, c-myc, and by decreasing cellular p38 kinase activity. Furthermore, we find that the ability of cis-platinum chemotherapy to degrade ΔNp63α contributes to the lytic-inducing effect of this agent in EBV-infected epithelial cells. Together these findings demonstrate that the loss of ΔNp63α expression, in conjunction with enhanced expression of differentiation-dependent transcription factors such as BLIMP1 and KLF4, induces lytic EBV reactivation during normal epithelial cell differentiation. Conversely, expression of ΔNp63α in undifferentiated nasopharyngeal carcinoma cells and TAp63α in Burkitt lymphoma promotes EBV latency in these malignancies.


Asunto(s)
Infecciones por Virus de Epstein-Barr/complicaciones , Herpesvirus Humano 4/patogenicidad , Queratinocitos/virología , Carcinoma Nasofaríngeo/virología , Neoplasias Nasofaríngeas/virología , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Latencia del Virus , Diferenciación Celular , Células Epiteliales/virología , Infecciones por Virus de Epstein-Barr/virología , Interacciones Huésped-Patógeno , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Activación Viral
16.
Stat Med ; 42(27): 5007-5024, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37705296

RESUMEN

We have previously proposed temporal recalibration to account for trends in survival over time to improve the calibration of predictions from prognostic models for new patients. This involves first estimating the predictor effects using data from all individuals (full dataset) and then re-estimating the baseline using a subset of the most recent data whilst constraining the predictor effects to remain the same. In this article, we demonstrate how temporal recalibration can be applied in competing risk settings by recalibrating each cause-specific (or subdistribution) hazard model separately. We illustrate this using an example of colon cancer survival with data from the Surveillance Epidemiology and End Results (SEER) program. Data from patients diagnosed in 1995-2004 were used to fit two models for deaths due to colon cancer and other causes respectively. We discuss considerations that need to be made in order to apply temporal recalibration such as the choice of data used in the recalibration step. We also demonstrate how to assess the calibration of these models in new data for patients diagnosed subsequently in 2005. Comparison was made to a standard analysis (when improvements over time are not taken into account) and a period analysis which is similar to temporal recalibration but differs in the data used to estimate the predictor effects. The 10-year calibration plots demonstrated that using the standard approach over-estimated the risk of death due to colon cancer and the total risk of death and that calibration was improved using temporal recalibration or period analysis.


Asunto(s)
Neoplasias del Colon , Humanos , Calibración , Pronóstico , Modelos de Riesgos Proporcionales , Neoplasias del Colon/diagnóstico
17.
BMC Med Res Methodol ; 23(1): 291, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087236

RESUMEN

PURPOSE: This study introduces a novel method for estimating the variance of life expectancy since diagnosis (LEC) and loss in life expectancy (LLE) for cancer patients within a relative survival framework in situations where life tables based on the entire general population are not accessible. LEC and LLE are useful summary measures of survival in population-based cancer studies, but require information on the mortality in the general population. Our method addresses the challenge of incorporating the uncertainty of expected mortality rates when using a sample from the general population. METHODS: To illustrate the approach, we estimated LEC and LLE for patients diagnosed with colon and breast cancer in Sweden. General population mortality rates were based on a random sample drawn from comparators of a matched cohort. Flexible parametric survival models were used to model the mortality among cancer patients and the mortality in the random sample from the general population. Based on the models, LEC and LLE together with their variances were estimated. The results were compared with those obtained using fixed expected mortality rates. RESULTS: By accounting for the uncertainty of expected mortality rates, the proposed method ensures more accurate estimates of variances and, therefore, confidence intervals of LEC and LLE for cancer patients. This is particularly valuable for older patients and some cancer types, where underestimation of the variance can be substantial when the entire general population data are not accessible. CONCLUSION: The method can be implemented using existing software, making it accessible for use in various cancer studies. The provided example of Stata code further facilitates its adoption.


Asunto(s)
Neoplasias de la Mama , Esperanza de Vida , Humanos , Femenino , Incertidumbre , Suecia/epidemiología , Mortalidad
18.
BMC Med Res Methodol ; 23(1): 87, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37038100

RESUMEN

BACKGROUND: Multi-state models are used to study several clinically meaningful research questions. Depending on the research question of interest and the information contained in the data, different multi-state structures and modelling choices can be applied. We aim to explore different research questions using a series of multi-state models of increasing complexity when studying repeated prescriptions data, while also evaluating different modelling choices. METHODS: We develop a series of research questions regarding the probability of being under antidepressant medication across time using multi-state models, among Swedish women diagnosed with breast cancer (n = 18,313) and an age-matched population comparison group of cancer-free women (n = 92,454) using a register-based database (Breast Cancer Data Base Sweden 2.0). Research questions were formulated ranging from simple to more composite ones. Depending on the research question, multi-state models were built with structures ranging from simpler ones, like single-event survival analysis and competing risks, up to complex bidirectional and recurrent multi-state structures that take into account the recurring start and stop of medication. We also investigate modelling choices, such as choosing a time-scale for the transition rates and borrowing information across transitions. RESULTS: Each structure has its own utility and answers a specific research question. However, the more complex structures (bidirectional, recurrent) enable accounting for the intermittent nature of prescribed medication data. These structures deliver estimates of the probability of being under medication and total time spent under medication over the follow-up period. Sensitivity analyses over different definitions of the medication cycle and different choices of timescale when modelling the transition intensity rates show that the estimates of total probabilities of being in a medication cycle over follow-up derived from the complex structures are quite stable. CONCLUSIONS: Each research question requires the definition of an appropriate multi-state structure, with more composite ones requiring such an increase in the complexity of the multi-state structure. When a research question is related with an outcome of interest that repeatedly changes over time, such as the medication status based on prescribed medication, the use of novel multi-state models of adequate complexity coupled with sensible modelling choices can successfully address composite, more realistic research questions.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Recurrencia Local de Neoplasia , Antidepresivos/uso terapéutico , Sistema de Registros , Prescripciones de Medicamentos
19.
Popul Health Metr ; 21(1): 13, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37700289

RESUMEN

BACKGROUND: Life expectancy is a simple measure of assessing health differences between two or more populations but current life expectancy calculations are not reliable for small populations. A potential solution to this is to borrow strength from larger populations from the same source, but this has not formally been investigated. METHODS: Using data on 451,222 individuals from the Clinical Practice Research Datalink on the presence/absence of intellectual disability and type 2 diabetes mellitus, we compared stratified and combined flexible parametric models, and Chiang's methods, for calculating life expectancy. Confidence intervals were calculated using the Delta method, Chiang's adjusted life table approach and bootstrapping. RESULTS: The flexible parametric models allowed calculation of life expectancy by exact age and beyond traditional life expectancy age thresholds. The combined model that fit age interaction effects as a spline term provided less bias and greater statistical precision for small covariate subgroups by borrowing strength from the larger subgroups. However, careful consideration of the distribution of events in the smallest group was needed. CONCLUSIONS: Life expectancy is a simple measure to compare health differences between populations. The use of combined flexible parametric methods to calculate life expectancy in small samples has shown promising results by allowing life expectancy to be modelled by exact age, greater statistical precision, less bias and prediction of different covariate patterns without stratification. We recommend further investigation of their application for both policymakers and researchers.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Esperanza de Vida , Tablas de Vida
20.
Proc Natl Acad Sci U S A ; 117(11): 6121-6128, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32123072

RESUMEN

Virus replication requires critical interactions between viral proteins and cellular proteins that mediate many aspects of infection, including the transport of viral genomes to the site of replication. In human papillomavirus (HPV) infection, the cellular protein complex known as retromer binds to the L2 capsid protein and sorts incoming virions into the retrograde transport pathway for trafficking to the nucleus. Here, we show that short synthetic peptides containing the HPV16 L2 retromer-binding site and a cell-penetrating sequence enter cells, sequester retromer from the incoming HPV pseudovirus, and inhibit HPV exit from the endosome, resulting in loss of viral components from cells and in a profound, dose-dependent block to infection. The peptide also inhibits cervicovaginal HPV16 pseudovirus infection in a mouse model. These results confirm the retromer-mediated model of retrograde HPV entry and validate intracellular virus trafficking as an antiviral target. More generally, inhibiting virus replication with agents that can enter cells and disrupt essential protein-protein interactions may be applicable in broad outline to many viruses.


Asunto(s)
Proteínas de la Cápside/metabolismo , Péptidos de Penetración Celular/farmacología , Papillomavirus Humano 16/efectos de los fármacos , Proteínas Oncogénicas Virales/metabolismo , Infecciones por Papillomavirus/tratamiento farmacológico , Internalización del Virus/efectos de los fármacos , Animales , Péptidos de Penetración Celular/uso terapéutico , Cuello del Útero/virología , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Células HeLa , Papillomavirus Humano 16/fisiología , Humanos , Ratones , Infecciones por Papillomavirus/virología , Unión Proteica/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , Vagina/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA