Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Nature ; 599(7883): 152-157, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34646016

RESUMEN

Molecular switch proteins whose cycling between states is controlled by opposing regulators1,2 are central to biological signal transduction. As switch proteins function within highly connected interaction networks3, the fundamental question arises of how functional specificity is achieved when different processes share common regulators. Here we show that functional specificity of the small GTPase switch protein Gsp1 in Saccharomyces cerevisiae (the homologue of the human protein RAN)4 is linked to differential sensitivity of biological processes to different kinetics of the Gsp1 (RAN) switch cycle. We make 55 targeted point mutations to individual protein interaction interfaces of Gsp1 (RAN) and show through quantitative genetic5 and physical interaction mapping that Gsp1 (RAN) interface perturbations have widespread cellular consequences. Contrary to expectation, the cellular effects of the interface mutations group by their biophysical effects on kinetic parameters of the GTPase switch cycle and not by the targeted interfaces. Instead, we show that interface mutations allosterically tune the GTPase cycle kinetics. These results suggest a model in which protein partner binding, or post-translational modifications at distal sites, could act as allosteric regulators of GTPase switching. Similar mechanisms may underlie regulation by other GTPases, and other biological switches. Furthermore, our integrative platform to determine the quantitative consequences of molecular perturbations may help to explain the effects of disease mutations that target central molecular switches.


Asunto(s)
Regulación Alostérica/genética , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mutación Puntual , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Sitios de Unión/genética , Dominio Catalítico/genética , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina Trifosfato/metabolismo , Cinética , Unión Proteica/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
2.
Biopolymers ; 105(8): 431-48, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26972107

RESUMEN

Widespread utilization of small GTPases as major regulatory hubs in many different biological systems derives from a conserved conformational switch mechanism that facilitates cycling between GTP-bound active and GDP-bound inactive states under control of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), which accelerate slow intrinsic rates of activation by nucleotide exchange and deactivation by GTP hydrolysis, respectively. Here we review developments leading to current understanding of intrinsic and GAP catalyzed GTP hydrolytic reactions in small GTPases from structural, molecular and chemical mechanistic perspectives. Despite the apparent simplicity of the GTPase cycle, the structural bases underlying the hallmark hydrolytic reaction and catalytic acceleration by GAPs are considerably more diverse than originally anticipated. Even the most fundamental aspects of the reaction mechanism have been challenging to decipher. Through a combination of experimental and in silico approaches, the outlines of a consensus view have begun to emerge for the best studied paradigms. Nevertheless, recent observations indicate that there is still much to be learned. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 431-448, 2016.


Asunto(s)
Ciclo Celular/fisiología , GTP Fosfohidrolasas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina Trifosfato/metabolismo , Animales , Catálisis , Humanos , Hidrólisis
3.
Proc Natl Acad Sci U S A ; 110(35): 14213-8, 2013 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23940353

RESUMEN

Membrane recruitment of cytohesin family Arf guanine nucleotide exchange factors depends on interactions with phosphoinositides and active Arf GTPases that, in turn, relieve autoinhibition of the catalytic Sec7 domain through an unknown structural mechanism. Here, we show that Arf6-GTP relieves autoinhibition by binding to an allosteric site that includes the autoinhibitory elements in addition to the PH domain. The crystal structure of a cytohesin-3 construct encompassing the allosteric site in complex with the head group of phosphatidyl inositol 3,4,5-trisphosphate and N-terminally truncated Arf6-GTP reveals a large conformational rearrangement, whereby autoinhibition can be relieved by competitive sequestration of the autoinhibitory elements in grooves at the Arf6/PH domain interface. Disposition of the known membrane targeting determinants on a common surface is compatible with multivalent membrane docking and subsequent activation of Arf substrates, suggesting a plausible model through which membrane recruitment and allosteric activation could be structurally integrated.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , GTP Fosfohidrolasas/metabolismo , Factor 6 de Ribosilación del ADP , Sitio Alostérico , Dominio Catalítico , Modelos Moleculares , Conformación Proteica , Resonancia por Plasmón de Superficie
4.
Traffic ; 13(10): 1429-41, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22762500

RESUMEN

Insulin stimulates glucose transport in adipocytes by triggering translocation of GLUT4 glucose transporters to the plasma membrane (PM) and several Rabs including Rab10 have been implicated in this process. To delineate the molecular regulation of this pathway, we conducted a TBC/RabGAP overexpression screen in adipocytes. This identified TBC1D13 as a potent inhibitor of insulin-stimulated GLUT4 translocation without affecting other trafficking pathways. To determine the potential Rab substrate for TBC1D13 we conducted a yeast two-hybrid screen and found that the GTP bound forms of Rabs 1 and 10 specifically interacted with TBC1D13 but not with eight other TBC proteins. Surprisingly, a comprehensive in vitro screen for TBC1D13 GAP activity revealed Rab35 but not Rab10 as a specific substrate. TBC1D13 also displayed in vivo GAP activity towards Rab35. Overexpression of constitutively active Rab35 but not constitutively active Rab10 reversed the block in insulin-stimulated GLUT4 translocation observed with TBC1D13 overexpression. These studies implicate an important role for Rab35 in insulin-stimulated GLUT4 translocation in adipocytes.


Asunto(s)
Adipocitos/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Células 3T3-L1 , Animales , Proteínas Activadoras de GTPasa/genética , Expresión Génica , Células HEK293 , Humanos , Insulina/metabolismo , Ratones , Proteínas Nucleares/genética , Transporte de Proteínas
5.
J Biol Chem ; 288(33): 24000-11, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23821544

RESUMEN

GTPase activating proteins (GAPs) from pathogenic bacteria and eukaryotic host organisms deactivate Rab GTPases by supplying catalytic arginine and glutamine fingers in trans and utilizing the cis-glutamine in the DXXGQ motif of the GTPase for binding rather than catalysis. Here, we report the transition state mimetic structure of the Legionella pneumophila GAP LepB in complex with Rab1 and describe a comprehensive structure-based mutational analysis of potential catalytic and recognition determinants. The results demonstrate that LepB does not simply mimic other GAPs but instead deploys an expected arginine finger in conjunction with a novel glutamic acid finger, which forms a salt bridge with an indispensible switch II arginine that effectively locks the cis-glutamine in the DXXGQ motif of Rab1 in a catalytically competent though unprecedented transition state configuration. Surprisingly, a heretofore universal transition state interaction with the cis-glutamine is supplanted by an elaborate polar network involving critical P-loop and switch I serines. LepB further employs an unusual tandem domain architecture to clamp a switch I tyrosine in an open conformation that facilitates access of the arginine finger to the hydrolytic site. Intriguingly, the critical P-loop serine corresponds to an oncogenic substitution in Ras and replaces a conserved glycine essential for the canonical transition state stereochemistry. In addition to expanding GTP hydrolytic paradigms, these observations reveal the unconventional dual finger and non-canonical catalytic network mechanisms of Rab GAPs as necessary alternative solutions to a major impediment imposed by substitution of the conserved P-loop glycine.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Legionella pneumophila/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Cristalografía por Rayos X , Activación Enzimática , GTP Fosfohidrolasas/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Electricidad Estática , Relación Estructura-Actividad , Tirosina/metabolismo , Proteínas de Unión al GTP rab/química
6.
J Biol Chem ; 287(27): 22740-8, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22637480

RESUMEN

Rab GTPases regulate vesicle budding, motility, docking, and fusion. In cells, their cycling between active, GTP-bound states and inactive, GDP-bound states is regulated by the action of opposing enzymes called guanine nucleotide exchange factors and GTPase-activating proteins (GAPs). The substrates for most RabGAPs are unknown, and the potential for cross-talk between different membrane trafficking pathways remains uncharted territory. Rab9A and its effectors regulate recycling of mannose 6-phosphate receptors from late endosomes to the trans Golgi network. We show here that RUTBC2 is a TBC domain-containing protein that binds to Rab9A specifically both in vitro and in cultured cells but is not a GAP for Rab9A. Biochemical screening of Rab protein substrates for RUTBC2 revealed highest GAP activity toward Rab34 and Rab36. In cells, membrane-associated RUTBC2 co-localizes with Rab36, and expression of wild type RUTBC2, but not the catalytically inactive, RUTBC2 R829A mutant, decreases the amount of membrane-associated Rab36 protein. These data show that RUTBC2 can act as a Rab36 GAP in cells and suggest that RUTBC2 links Rab9A function to Rab36 function in the endosomal system.


Asunto(s)
Endosomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Transporte de Proteínas/fisiología , Proteínas de Unión al GTP rab/metabolismo , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , GTP Fosfohidrolasas/metabolismo , Células HEK293 , Células HeLa , Humanos , Hidrólisis , Péptidos y Proteínas de Señalización Intracelular/genética , Datos de Secuencia Molecular , Neuroblastoma , Neuronas/citología , Neuronas/metabolismo , Técnicas del Sistema de Dos Híbridos , Células Vero
7.
Nat Cell Biol ; 8(9): 971-7, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16906144

RESUMEN

The intracellular pathogen Legionella pneumophila avoids fusion with lysosomes and subverts membrane transport from the endoplasmic reticulum to create an organelle that supports bacterial replication. Transport of endoplasmic reticulum-derived vesicles to the Legionella-containing vacuole (LCV) requires bacterial proteins that are translocated into host cells by a type IV secretion apparatus called Dot/Icm. Recent observations have revealed recruitment of the host GTPase Rab1 to the LCV by a process requiring the Dot/Icm system. Here, a visual screen was used to identify L. pneumophila mutants with defects in Rab1 recruitment. One of the factors identified in this screen was DrrA, a new Dot/Icm substrate protein translocated into host cells. We show that DrrA is a potent and highly specific Rab1 guanine nucleotide-exchange factor (GEF). DrrA can disrupt Rab1-mediated secretory transport to the Golgi apparatus by competing with endogenous exchange factors to recruit and activate Rab1 on plasma membrane-derived organelles. These data establish that intracellular pathogens have the capacity to directly modulate the activation state of a specific member of the Rab family of GTPases and thus further our understanding of the mechanisms used by bacterial pathogens to manipulate host vesicular transport.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Legionella pneumophila/fisiología , Proteínas de Unión al GTP rab1/metabolismo , Animales , Proteínas Bacterianas/genética , Transporte Biológico Activo , Membrana Celular/metabolismo , Células Cultivadas , Proteínas de Unión al ADN/genética , Femenino , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Ratones , Mutación , Transporte de Proteínas , Vacuolas/metabolismo , Vacuolas/microbiología , Proteínas de Unión al GTP rab1/genética
8.
Nature ; 450(7168): 365-9, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17952054

RESUMEN

Rab1 is a GTPase that regulates the transport of endoplasmic-reticulum-derived vesicles in eukaryotic cells. The intracellular pathogen Legionella pneumophila subverts Rab1 function to create a vacuole that supports bacterial replication by a mechanism that is not well understood. Here we describe L. pneumophila proteins that control Rab1 activity directly. We show that a region in the DrrA (defect in Rab1 recruitment A) protein required for recruitment of Rab1 to membranes functions as a guanine nucleotide dissociation inhibitor displacement factor. A second region of the DrrA protein stimulated Rab1 activation by functioning as a guanine nucleotide exchange factor. The LepB protein was found to inactivate Rab1 by stimulating GTP hydrolysis, indicating that LepB has GTPase-activating protein activity that regulates removal of Rab proteins from membranes. Thus, L. pneumophila encodes proteins that regulate three distinct biochemical reactions critical for Rab GTPase membrane cycling to redirect Rab1 to the pathogen-occupied vacuole and to control Rab1 function.


Asunto(s)
Proteínas Bacterianas/metabolismo , Legionella pneumophila/metabolismo , Proteínas de Unión al GTP rab1/metabolismo , Animales , Proteínas Bacterianas/genética , Transporte Biológico , Línea Celular , Proteínas Activadoras de GTPasa/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Interacciones Huésped-Patógeno , Humanos , Legionella pneumophila/genética , Ratones , Vacuolas/metabolismo , Vacuolas/microbiología , Proteínas de Unión al GTP rab1/genética
9.
Proc Natl Acad Sci U S A ; 107(24): 10866-71, 2010 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-20534488

RESUMEN

Regulation of endosomal trafficking by Rab GTPases depends on selective interactions with multivalent effectors, including EEA1 and Rabenosyn-5, which facilitate endosome tethering, sorting, and fusion. Both EEA1 and Rabenosyn-5 contain a distinctive N-terminal C(2)H(2) zinc finger that binds Rab5. How these C(2)H(2) zinc fingers recognize Rab GTPases remains unknown. Here, we report the crystal structure of Rab5A in complex with the EEA1 C(2)H(2) zinc finger. The binding interface involves all elements of the zinc finger as well as a short N-terminal extension but is restricted to the switch and interswitch regions of Rab5. High selectivity for Rab5 and, to a lesser extent Rab22, is observed in quantitative profiles of binding to Rab family GTPases. Although critical determinants are identified in both switch regions, Rab4-to-Rab5 conversion-of-specificity mutants reveal an essential requirement for additional substitutions in the proximal protein core that are predicted to indirectly influence recognition through affects on the structure and conformational stability of the switch regions.


Asunto(s)
Autoantígenos/química , Autoantígenos/metabolismo , Endosomas/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Cristalografía por Rayos X , Endosomas/inmunología , Humanos , Técnicas In Vitro , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Resonancia por Plasmón de Superficie , Proteínas de Transporte Vesicular/inmunología , Dedos de Zinc , Proteínas de Unión al GTP rab4/química , Proteínas de Unión al GTP rab4/genética , Proteínas de Unión al GTP rab4/metabolismo , Proteínas de Unión al GTP rab5/química , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo
10.
Traffic ; 11(6): 782-99, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20331534

RESUMEN

In migrating cells, the cytoskeleton coordinates signal transduction and redistribution of transmembrane proteins, including integrins and growth factor receptors. Supervillin is an F-actin- and myosin II-binding protein that tightly associates with signaling proteins in cholesterol-rich, 'lipid raft' membrane microdomains. We show here that supervillin also can localize with markers for early and sorting endosomes (EE/SE) and with overexpressed components of the Arf6 recycling pathway in the cell periphery. Supervillin tagged with the photoswitchable fluorescent protein, tdEos, moves both into and away from dynamic structures resembling podosomes at the basal cell surface. Rapid integrin recycling from EE/SE is inhibited in supervillin-knockdown cells, but the rates of integrin endocytosis and recycling from the perinuclear recycling center (PNRC) are unchanged. A lack of synergy between supervillin knockdown and the actin filament barbed-end inhibitor, cytochalasin D, suggests that both treatments affect actin-dependent rapid recycling. Supervillin also enhances signaling from the epidermal growth factor receptor (EGFR) to extracellular signal-regulated kinases (ERKs) 1 and 2 and increases the velocity of cell translocation. These results suggest that supervillin, F-actin and associated proteins coordinate a rapid, basolateral membrane recycling pathway that contributes to ERK signaling and actin-based cell motility.


Asunto(s)
Actinas/química , Movimiento Celular , Integrinas/metabolismo , Proteínas de la Membrana/química , Proteínas de Microfilamentos/química , Animales , Células COS , Chlorocebus aethiops , Citocalasina D/química , Endocitosis , Endosomas/metabolismo , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/fisiología , Proteínas de Microfilamentos/fisiología , Transducción de Señal
11.
J Biol Chem ; 286(38): 33213-22, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21808068

RESUMEN

Rab GTPases regulate all steps of membrane trafficking. Their interconversion between active, GTP-bound states and inactive, GDP-bound states is regulated by guanine nucleotide exchange factors and GTPase-activating proteins. The substrates for most Rab GTPase-activating proteins (GAPs) are unknown. Rab9A and its effectors regulate transport of mannose 6-phosphate receptors from late endosomes to the trans-Golgi network. We show here that RUTBC1 is a Tre2/Bub2/Cdc16 domain-containing protein that binds to Rab9A-GTP both in vitro and in cultured cells, but is not a GTPase-activating protein for Rab9A. Biochemical screening of RUTBC1 Rab protein substrates revealed highest in vitro GTP hydrolysis-activating activity with Rab32 and Rab33B. Catalysis required Arg-803 of RUTBC1, and RUTBC1 could activate a catalytically inhibited Rab33B mutant (Q92A), in support of a dual finger mechanism for RUTBC1 action. Rab9A binding did not influence GAP activity of bead-bound RUTBC1 protein. In cells and cell extracts, RUTBC1 influenced the ability of Rab32 to bind its effector protein, Varp, consistent with a physiological role for RUTBC1 in regulating Rab32. In contrast, binding of Rab33B to its effector protein, Atg16L1, was not influenced by RUTBC1 in cells or extracts. The identification of a protein that binds Rab9A and inactivates Rab32 supports a model in which Rab9A and Rab32 act in adjacent pathways at the boundary between late endosomes and the biogenesis of lysosome-related organelles.


Asunto(s)
Guanosina Trifosfato/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Secuencia de Aminoácidos , Animales , Biocatálisis , Extractos Celulares , Línea Celular , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Hidrólisis , Péptidos y Proteínas de Señalización Intracelular/química , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato
12.
Nat Struct Mol Biol ; 14(5): 406-12, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17450153

RESUMEN

RABEX-5 and other exchange factors with VPS9 domains regulate endocytic trafficking through activation of the Rab family GTPases RAB5, RAB21 and RAB22. Here we report the crystal structure of the RABEX-5 catalytic core in complex with nucleotide-free RAB21, a key intermediate in the exchange reaction pathway. The structure reveals how VPS9 domain exchange factors recognize Rab GTPase substrates, accelerate GDP release and stabilize the nucleotide-free conformation. We further identify an autoinhibitory element in a predicted amphipathic helix located near the C terminus of the VPS9 domain. The autoinhibitory element overlaps with the binding site for the multivalent effector RABAPTIN-5 and potently suppresses the exchange activity of RABEX-5. Autoinhibition can be partially reversed by mutation of conserved residues on the nonpolar face of the predicted amphipathic helix or by assembly of the complex with RABAPTIN-5.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Proteínas de Unión al GTP rab/química , Sitios de Unión , Cristalografía por Rayos X , Activación Enzimática , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina Difosfato/metabolismo , Humanos , Mutación , Conformación Proteica , Proteínas de Transporte Vesicular , Proteínas de Unión al GTP rab/metabolismo
13.
Nature ; 442(7100): 303-6, 2006 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-16855591

RESUMEN

Rab GTPases regulate membrane trafficking by cycling between inactive (GDP-bound) and active (GTP-bound) conformations. The duration of the active state is limited by GTPase-activating proteins (GAPs), which accelerate the slow intrinsic rate of GTP hydrolysis. Proteins containing TBC (Tre-2, Bub2 and Cdc16) domains are broadly conserved in eukaryotic organisms and function as GAPs for Rab GTPases as well as GTPases that control cytokinesis. An exposed arginine residue is a critical determinant of GAP activity in vitro and in vivo. It has been expected that the catalytic mechanism of TBC domains would parallel that of Ras and Rho family GAPs. Here we report crystallographic, mutational and functional analyses of complexes between Rab GTPases and the TBC domain of Gyp1p. In the crystal structure of a TBC-domain-Rab-GTPase-aluminium fluoride complex, which approximates the transition-state intermediate for GTP hydrolysis, the TBC domain supplies two catalytic residues in trans, an arginine finger analogous to Ras/Rho family GAPs and a glutamine finger that substitutes for the glutamine in the DxxGQ motif of the GTPase. The glutamine from the Rab GTPase does not stabilize the transition state as expected but instead interacts with the TBC domain. Strong conservation of both catalytic fingers indicates that most TBC-domain GAPs may accelerate GTP hydrolysis by a similar dual-finger mechanism.


Asunto(s)
Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/metabolismo , Compuestos de Aluminio/metabolismo , Animales , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Fluoruros/metabolismo , Hidrólisis , Modelos Moleculares , Mutación/genética , Estructura Terciaria de Proteína , Electricidad Estática , Relación Estructura-Actividad , Especificidad por Sustrato , Proteínas de Unión al GTP rab/genética
14.
Traffic ; 10(10): 1377-89, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19522756

RESUMEN

In all eukaryotic organisms, Rab GTPases function as critical regulators of membrane traffic, organelle biogenesis and maturation, and related cellular processes. The numerous Rab proteins have distinctive yet overlapping subcellular distributions throughout the endomembrane system. Intensive investigation has clarified the underlying molecular and structural mechanisms for several ubiquitous Rab proteins that control membrane traffic between tubular-vesicular organelles in the exocytic, endocytic and recycling pathways. In this review, we focus on structural insights that inform our current understanding of the organization of the Rab family as well as the mechanisms for membrane targeting and activation, interaction with effectors, deactivation and specificity determination.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/fisiología , Animales , Humanos , Modelos Moleculares , Filogenia , Conformación Proteica , Transporte de Proteínas , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
15.
J Biol Chem ; 285(36): 27581-9, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20587420

RESUMEN

Protein kinase B/Akt protein kinases control an array of diverse functions, including cell growth, survival, proliferation, and metabolism. We report here the identification of pleckstrin homology-like domain family B member 1 (PHLDB1) as an insulin-responsive protein that enhances Akt activation. PHLDB1 contains a pleckstrin homology domain, which we show binds phosphatidylinositol PI(3,4)P(2), PI(3,5)P(2), and PI(3,4,5)P(3), as well as a Forkhead-associated domain and coiled coil regions. PHLDB1 expression is increased during adipocyte differentiation, and it is abundant in many mouse tissues. Both endogenous and HA- or GFP-tagged PHLDB1 displayed a cytoplasmic disposition in unstimulated cultured adipocytes but translocated to the plasma membrane in response to insulin. Depletion of PHLDB1 by siRNA inhibited insulin stimulation of Akt phosphorylation but not tyrosine phosphorylation of IRS-1. RNAi-based silencing of PHLDB1 in cultured adipocytes also attenuated insulin-stimulated deoxyglucose transport and Myc-GLUT4-EGFP translocation to the plasma membrane, whereas knockdown of the PHLDB1 isoform PHLDB2 failed to attenuate insulin-stimulated deoxyglucose transport. Furthermore, adenovirus-mediated expression of PHLDB1 in adipocytes enhanced insulin-stimulated Akt and p70 S6 kinase phosphorylation, as well as GLUT4 translocation. These results indicate that PHLDB1 is a novel modulator of Akt protein kinase activation by insulin.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células 3T3-L1 , Animales , Proteínas Sanguíneas/química , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Glucosa/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoproteínas/química , Fosforilación/efectos de los fármacos , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Homología de Secuencia de Aminoácido
17.
Nature ; 436(7049): 415-9, 2005 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-16034420

RESUMEN

Rab GTPases regulate all stages of membrane trafficking, including vesicle budding, cargo sorting, transport, tethering and fusion. In the inactive (GDP-bound) conformation, accessory factors facilitate the targeting of Rab GTPases to intracellular compartments. After nucleotide exchange to the active (GTP-bound) conformation, Rab GTPases interact with functionally diverse effectors including lipid kinases, motor proteins and tethering complexes. How effectors distinguish between homologous Rab GTPases represents an unresolved problem with respect to the specificity of vesicular trafficking. Using a structural proteomic approach, we have determined the specificity and structural basis underlying the interaction of the multivalent effector rabenosyn-5 with the Rab family. The results demonstrate that even the structurally similar effector domains in rabenosyn-5 can achieve highly selective recognition of distinct subsets of Rab GTPases exclusively through interactions with the switch and interswitch regions. The observed specificity is determined at a family-wide level by structural diversity in the active conformation, which governs the spatial disposition of critical conserved recognition determinants, and by a small number of both positive and negative sequence determinants that allow further discrimination between Rab GTPases with similar switch conformations.


Asunto(s)
Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/química , Proteínas de Unión al GTP rab/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Humanos , Enlace de Hidrógeno , Proteínas de la Membrana/genética , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Estructura Terciaria de Proteína , Especificidad por Sustrato , Resonancia por Plasmón de Superficie , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab/genética
18.
Structure ; 29(8): 779-781, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34358462

RESUMEN

COPII vesicle biogenesis at the endoplasmic reticulum requires activation of the Sar1 GTPase, which recruits the COP II coat protein complex to drive membrane budding. In this issue of Structure, Joiner and Fromme (2021) investigate the enigmatic structural basis for Sar1 activation by the Sec12 guanine nucleotide exchange factor.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento , Proteínas de Transporte Vesicular , Retículo Endoplásmico , GTP Fosfohidrolasas , Factores de Intercambio de Guanina Nucleótido , Humanos , Proteínas de Transporte Vesicular/genética
19.
Methods Mol Biol ; 2293: 27-43, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34453708

RESUMEN

Measurement of intrinsic as well as GTPase-activating Protein (GAP) catalyzed GTP hydrolysis is central to understanding the molecular mechanism and function of GTPases in diverse cellular processes. For the Rab GTPase family, which comprises at least 60 distinct proteins in humans, putative GAPs have been identified from both eukaryotic organisms and pathogenic bacteria. A major obstacle has involved identification of target substrates and determination of the specificity for the Rab family. Here, we describe a sensitive, high-throughput method to quantitatively profile GAP activity for Rab GTPases in microplate format based on detection of inorganic phosphate released after GTP hydrolysis. The method takes advantage of a well-characterized fluorescent phosphate sensor, requires relatively low protein concentrations, and can, in principle, be applied to any GAP-GTPase system.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Guanosina Trifosfato , Humanos , Especificidad por Sustrato , Proteínas de Unión al GTP rab/metabolismo
20.
Biochemistry ; 49(29): 6083-92, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20527794

RESUMEN

The Arf exchange factor Grp1 selectively binds phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P(3)], which is required for recruitment to the plasma membrane in stimulated cells. The mechanisms for phosphoinositide recognition by the PH domain, catalysis of nucleotide exchange by the Sec7 domain, and autoinhibition by elements proximal to the PH domain are well-characterized. The N-terminal heptad repeats in Grp1 have also been shown to mediate homodimerization in vitro as well as heteromeric interactions with heptad repeats in the FERM domain-containing protein Grsp1 both in vitro and in cells [Klarlund, J. K., et al. (2001) J. Biol. Chem. 276, 40065-40070]. Here, we have characterized the oligomeric state of Grsp1 and Grp1 family proteins (Grp1, ARNO, and Cytohesin-1) as well as the oligomeric state, stoichiometry, and specificity of Grsp1 complexes with Grp1, ARNO, and Cytohesin-1. At low micromolar concentrations, Grp1 and ARNO are homodimeric whereas Cytohesin-1 and Grsp1 are monomeric. When mixed with Grsp1, Grp1 homodimers and Cytohesin-1 monomers spontaneously re-equilibrate to form heterodimers, whereas approximately 50% of ARNO remains homodimeric under the same conditions. Fluorescence resonance energy transfer experiments suggest that the Grsp1 heterodimers with Grp1 and Cytohesin-1 adopt a largely antiparallel orientation. Finally, formation of Grsp1-Grp1 heterodimers does not substantially influence the binding of Grp1 to the headgroups of PtdIns(3,4,5)P(3) or PtdIns(4,5)P(2), nor does it influence partitioning with liposomes containing PtdIns(3,4,5)P(3), PtdIns(4,5)P(2), and/or phosphatidylserine.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Secuencia de Aminoácidos , Animales , Transferencia Resonante de Energía de Fluorescencia , Proteínas Activadoras de GTPasa/química , Proteínas Activadoras de GTPasa/genética , Humanos , Ratones , Datos de Secuencia Molecular , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Multimerización de Proteína , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA