Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Chem Inf Model ; 63(5): 1506-1520, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36802548

RESUMEN

Trypanosoma cruzi is a parasite that infects about 6-7 million people worldwide, mostly in Latin America, causing Chagas disease. Cruzain, the main cysteine protease of T. cruzi, is a validated target for developing drug candidates for Chagas disease. Thiosemicarbazones are one of the most relevant warheads used in covalent inhibitors targeting cruzain. Despite its relevance, the mechanism of inhibition of cruzain by thiosemicarbazones is unknown. Here, we combined experiments and simulations to unveil the covalent inhibition mechanism of cruzain by a thiosemicarbazone-based inhibitor (compound 1). Additionally, we studied a semicarbazone (compound 2), which is structurally similar to compound 1 but does not inhibit cruzain. Assays confirmed the reversibility of inhibition by compound 1 and suggested a two-step mechanism of inhibition. The Ki was estimated to be 36.3 µM and Ki* to be 11.5 µM, suggesting the pre-covalent complex to be relevant for inhibition. Molecular dynamics simulations of compounds 1 and 2 with cruzain were used to propose putative binding modes for the ligands. One-dimensional (1D) quantum mechanics/molecular mechanics (QM/MM) potential of mean force (PMF) and gas-phase energies showed that the attack of Cys25-S- on the C═S or C═O bond yields a more stable intermediate than the attack on the C═N bond of the thiosemicarbazone/semicarbazone. Two-dimensional (2D) QM/MM PMF revealed a putative reaction mechanism for compound 1, involving the proton transfer to the ligand, followed by the Cys25-S- attack at C═S. The ΔG and energy barrier were estimated to be -1.4 and 11.7 kcal/mol, respectively. Overall, our results shed light on the inhibition mechanism of cruzain by thiosemicarbazones.


Asunto(s)
Enfermedad de Chagas , Semicarbazonas , Tiosemicarbazonas , Trypanosoma cruzi , Humanos , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Cisteína Endopeptidasas/química , Proteínas Protozoarias/química , Inhibidores de Cisteína Proteinasa/química
2.
Molecules ; 28(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37446635

RESUMEN

Caffeic acid (CA) exhibits a myriad of biological activities including cardioprotective action, antioxidant, antitumor, anti-inflammatory, and antimicrobial properties. On the other hand, CA presents low water solubility and poor bioavailability, which have limited its use for therapeutic applications. The objective of this study was to develop a nanohybrid of zinc basic salts (ZBS) and chitosan (Ch) containing CA (ZBS-CA/Ch) and evaluate its anti-edematogenic and antioxidant activity in dextran and carrageenan-induced paw edema model. The samples were obtained by coprecipitation method and characterized by X-ray diffraction, Fourier transform infrared (FT-IR), scanning electron microscope (SEM) and UV-visible spectroscopy. The release of caffeate anions from ZBS-CA and ZBS-CA/Ch is pH-dependent and is explained by a pseudo-second order kinetics model, with a linear correlation coefficient of R2 ≥ 0.99 at pH 4.8 and 7.4. The in vivo pharmacological assays showed excellent anti-edematogenic and antioxidant action of the ZBS-CA/Ch nanoparticle with slowly releases of caffeate anions in the tissue, leading to a prolongation of CA-induced anti-edematogenic and anti-inflammatory activities, as well as improving its inhibition or sequestration antioxidant action toward reactive species. Overall, this study highlighted the importance of ZBS-CA/Ch as an optimal drug carrier.


Asunto(s)
Quitosano , Humanos , Quitosano/química , Preparaciones de Acción Retardada/química , Espectroscopía Infrarroja por Transformada de Fourier , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Edema/patología , Zinc/química
3.
Biochemistry ; 61(13): 1404-1414, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35687722

RESUMEN

A primary component of all known bacterial cell walls is the peptidoglycan (PG) layer, which is composed of repeating units of sugars connected to short and unusual peptides. The various steps within PG biosynthesis are targets of potent antibiotics as proper assembly of the PG is essential for cellular growth and survival. Synthetic mimics of PG have proven to be indispensable tools to study the bacterial cell structure, growth, and remodeling. Yet, a common component of PG, meso-diaminopimelic acid (m-DAP) at the third position of the stem peptide, remains challenging to access synthetically and is not commercially available. Here, we describe the synthesis and metabolic processing of a selenium-based bioisostere of m-DAP (selenolanthionine) and show that it is installed within the PG of live bacteria by the native cell wall crosslinking machinery in mycobacterial species. This PG probe has an orthogonal release mechanism that could be important for downstream proteomics studies. Finally, we describe a bead-based assay that is compatible with high-throughput screening of cell wall enzymes. We envision that this probe will supplement the current methods available for investigating PG crosslinking in m-DAP-containing organisms.


Asunto(s)
Mycobacterium , Selenio , Pared Celular/química , Ácido Diaminopimélico/metabolismo , Mycobacterium/metabolismo , Peptidoglicano/química
4.
J Chem Inf Model ; 62(17): 4083-4094, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36044342

RESUMEN

We have used molecular dynamics (MD) simulations with hybrid quantum mechanics/molecular mechanics (QM/MM) potentials to investigate the reaction mechanism for covalent inhibition of cathepsin K and assess the reversibility of inhibition. The computed free energy profiles suggest that a nucleophilic attack by the catalytic cysteine on the inhibitor warhead and proton transfer from the catalytic histidine occur in a concerted manner. The results indicate that the reaction is more strongly exergonic for the alkyne-based inhibitors, which bind irreversibly to cathepsin K, than for the nitrile-based inhibitor odanacatib, which binds reversibly. Gas-phase energies were also calculated for the addition of methanethiol to structural prototypes for a number of warheads of interest in cysteine protease inhibitor design in order to assess electrophilicity. The approaches presented in this study are particularly applicable to assessment of novel warheads, and computed transition state geometries can be incorporated into molecular models for covalent docking.


Asunto(s)
Inhibidores de Cisteína Proteinasa , Simulación de Dinámica Molecular , Catálisis , Catepsina K/metabolismo , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Proteasas , Teoría Cuántica
5.
Molecules ; 27(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35458718

RESUMEN

Repellents are compounds that prevent direct contact between the hosts and the arthropods that are vectors of diseases. Several studies have described the repellent activities of natural compounds obtained from essential oils. In addition, these chemical constituents have been pointed out as alternatives to conventional synthetic repellents due to their interesting residual protection and low toxicity to the environment. However, these compounds have been reported with short shelf life, in part, due to their volatile nature. Nanoencapsulation provides protection, stability, conservation, and controlled release for several compounds. Here, we review the most commonly used polymeric/lipid nanosystems applied in the encapsulation of small organic molecules obtained from essential oils that possess repellent activity, and we also explore the theoretical aspects related to the intermolecular interactions, thermal stability, and controlled release of the nanoencapsulated bioactive compounds.


Asunto(s)
Productos Biológicos , Repelentes de Insectos , Aceites Volátiles , Productos Biológicos/farmacología , Preparaciones de Acción Retardada , Repelentes de Insectos/química , Repelentes de Insectos/farmacología , Aceites Volátiles/química , Aceites Volátiles/farmacología , Polímeros
6.
Genet Mol Biol ; 45(1): e20210204, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35037933

RESUMEN

Bacteriocins are antimicrobial peptides expressed by bacteria through ribosomal activity. In this study, we analyzed the diversity of bacteriocin-like genes in the Tucuruí-HPP using a whole-metagenome shotgun sequencing approach. Three layers of the water column were analyzed (photic, aphotic and sediment). Detection of bacteriocin-like genes was performed with blastx using the BAGEL4 database as subject sequences. In order to calculate the abundance of bacteriocin-like genes we also determined the number of 16S rRNA genes using blastn. Taxonomic analysis was performed using RAST server and the metagenome was assembled using IDBA-UD in order to recover the full sequence of a zoocin which had its three-dimensional structure determined. The photic zone presented the highest number of reads affiliated to bacteriocins. The most abundant bacteriocins were sonorensin, Klebicin D , pyocin and colicin. The zoocin model was composed of eight anti-parallel ß-sheets and two α-helices with a Zn2+ ion in the active site. This model was considerably stable during 10 ns of molecular dynamics simulation. We observed a high diversity of bacteriocins in the Tucuruí-HPP, demonstrating that the environment is an inexhaustible source for prospecting these molecules. Finally, the zoocin model can be used for further studies of substrate binding and molecular mechanisms involving peptidoglycan degradation.

7.
Proteins ; 89(10): 1340-1352, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34075621

RESUMEN

Recently, a bacterium strain of Ideonella sakaiensis was identified with the uncommon ability to degrade the poly(ethylene terephthalate) (PET). The PETase from I. sakaiensis strain 201-F6 (IsPETase) catalyzes the hydrolysis of PET converting it to mono(2-hydroxyethyl) terephthalic acid (MHET), bis(2-hydroxyethyl)-TPA (BHET), and terephthalic acid (TPA). Despite the potential of this enzyme for mitigation or elimination of environmental contaminants, one of the limitations of the use of IsPETase for PET degradation is the fact that it acts only at moderate temperature due to its low thermal stability. Besides, molecular details of the main interactions of PET in the active site of IsPETase remain unclear. Herein, molecular docking and molecular dynamics (MD) simulations were applied to analyze structural changes of IsPETase induced by PET binding. Results from the essential dynamics revealed that the ß1-ß2 connecting loop is very flexible. This loop is located far from the active site of IsPETase and we suggest that it can be considered for mutagenesis to increase the thermal stability of IsPETase. The free energy landscape (FEL) demonstrates that the main change in the transition between the unbound to the bound state is associated with the ß7-α5 connecting loop, where the catalytic residue Asp206 is located. Overall, the present study provides insights into the molecular binding mechanism of PET into the IsPETase structure and a computational strategy for mapping flexible regions of this enzyme, which can be useful for the engineering of more efficient enzymes for recycling plastic polymers using biological systems.


Asunto(s)
Proteínas Bacterianas/metabolismo , Burkholderiales/metabolismo , Hidrolasas/metabolismo , Tereftalatos Polietilenos/metabolismo , Biocatálisis , Hidrólisis
8.
J Chem Inf Model ; 61(9): 4733-4744, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34460252

RESUMEN

Covalent inhibitors are assuming central importance in drug discovery projects, especially in this pandemic scenario. Many research groups have focused their attention on inhibiting viral proteases or human proteases such as cathepsin L (hCatL). The inhibition of these critical enzymes may impair viral replication. However, molecular modeling of covalent ligands is challenging since covalent and noncovalent ligand-bound states must be considered in the binding process. In this work, we evaluated the suitability of free energy perturbation (FEP) calculations as a tool for predicting the binding affinity of reversible covalent inhibitors of hCatL. Our strategy relies on the relative free energy calculated for both covalent and noncovalent complexes and the free energy changes have been compared with experimental data for eight nitrile-based inhibitors, including three new inhibitors of hCatL. Our results demonstrate that the covalent complex can be employed to properly rank the inhibitors. Nevertheless, a comparison of the free energy changes in both noncovalent and covalent states is valuable to interpret the effect triggered by the formation of the covalent bond on the interactions played by functional groups distant from the warhead. Overall, FEP can be employed as a powerful predictor tool in developing and understanding the activity of reversible covalent inhibitors.


Asunto(s)
Descubrimiento de Drogas , Entropía , Humanos , Ligandos , Modelos Moleculares , Termodinámica
9.
Bioorg Med Chem ; 29: 115827, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33254069

RESUMEN

Human cathepsin B (CatB) is an important biological target in cancer therapy. In this work, we performed a knowledge-based design approach and the synthesis of a new set of 19 peptide-like nitrile-based cathepsin inhibitors. Reported compounds were assayed against a panel of human cysteine proteases: CatB, CatL, CatK, and CatS. Three compounds (7h, 7i, and 7j) displayed nanomolar inhibition of CatB and selectivity over CatK and CatL. The selectivity was achieved by using the combination of a para biphenyl ring at P3, halogenated phenylalanine in P2 and Thr-O-Bz group at P1. Likewise, compounds 7i and 7j showed selective CatB inhibition among the panel of enzymes studied. We have also described a successful example of bioisosteric replacement of the amide bond for a sulfonamide one [7e â†’ 6b], where we observed an increase in affinity and selectivity for CatB while lowering the compound lipophilicity (ilogP). Our knowledge-based design approach and the respective structure-activity relationships provide insights into the specific ligand-target interactions for therapeutically relevant cathepsins.


Asunto(s)
Amidas/farmacología , Aminas/farmacología , Catepsina B/antagonistas & inhibidores , Catepsina L/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Amidas/síntesis química , Amidas/química , Aminas/síntesis química , Aminas/química , Catepsina B/metabolismo , Catepsina L/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Simulación de Dinámica Molecular , Estructura Molecular , Relación Estructura-Actividad
10.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35008724

RESUMEN

The inhibition of key enzymes that may contain the viral replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have assumed central importance in drug discovery projects. Nonstructural proteins (nsps) are essential for RNA capping and coronavirus replication since it protects the virus from host innate immune restriction. In particular, nonstructural protein 16 (nsp16) in complex with nsp10 is a Cap-0 binding enzyme. The heterodimer formed by nsp16-nsp10 methylates the 5'-end of virally encoded mRNAs to mimic cellular mRNAs and thus it is one of the enzymes that is a potential target for antiviral therapy. In this study, we have evaluated the mechanism of the 2'-O methylation of the viral mRNA cap using hybrid quantum mechanics/molecular mechanics (QM/MM) approach. It was found that the calculated free energy barriers obtained at M062X/6-31+G(d,p) is in agreement with experimental observations. Overall, we provide a detailed molecular analysis of the catalytic mechanism involving the 2'-O methylation of the viral mRNA cap and, as expected, the results demonstrate that the TS stabilization is critical for the catalysis.


Asunto(s)
Metiltransferasas/metabolismo , Caperuzas de ARN/química , Caperuzas de ARN/metabolismo , SARS-CoV-2/enzimología , SARS-CoV-2/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Biocatálisis , Fenómenos Biomecánicos , Metilación , Metiltransferasas/química , Simulación de Dinámica Molecular , Teoría Cuántica , Procesamiento Postranscripcional del ARN , Proteínas no Estructurales Virales/química , Proteínas Reguladoras y Accesorias Virales/química
11.
J Chem Inf Model ; 60(2): 738-746, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31927962

RESUMEN

The catalytic mechanism of SalL chlorinase has been investigated by combining quantum mechanical/molecular mechanical (QM/MM) techniques and umbrella sampling simulations to compute free energy profiles. Our results shed light on the interesting fact that the substitution of chloride with fluorine in SalL chlorinase leads to a loss of halogenase activity. The potential of mean force based on DFTB3/MM analysis shows that fluorination corresponds to a barrier 13.5 kcal·mol-1 higher than chlorination. Additionally, our results present a molecular description of SalL acting as a chlorinase instead of a methyl-halide transferase.


Asunto(s)
Cloruros/química , Cloruros/metabolismo , Hidrolasas/metabolismo , Modelos Moleculares , Teoría Cuántica , Hidrolasas/química , Conformación Proteica , Estereoisomerismo , Especificidad por Sustrato , Termodinámica
12.
J Chem Inf Model ; 60(2): 880-889, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31944110

RESUMEN

One tactic for cysteine protease inhibition is to form a covalent bond between an electrophilic atom of the inhibitor and the thiol of the catalytic cysteine. In this study, we evaluate the reaction free energy obtained from a hybrid quantum mechanical/molecular mechanical (QM/MM) free energy profile as a predictor of affinity for reversible, covalent inhibitors of rhodesain. We demonstrate that the reaction free energy calculated with the PM6/MM potential is in agreement with the experimental data and suggest that the free energy profile for covalent bond formation in a protein environment may be a useful tool for the inhibitor design.


Asunto(s)
Proteasas de Cisteína/metabolismo , Inhibidores de Cisteína Proteinasa/metabolismo , Teoría Cuántica , Proteasas de Cisteína/química , Ligandos , Modelos Moleculares , Conformación Proteica , Termodinámica
13.
J Chem Inf Model ; 60(3): 1666-1677, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32126170

RESUMEN

Reversible and irreversible covalent ligands are advanced cysteine protease inhibitors in the drug development pipeline. K777 is an irreversible inhibitor of cruzain, a necessary enzyme for the survival of the Trypanosoma cruzi (T. cruzi) parasite, the causative agent of Chagas disease. Despite their importance, irreversible covalent inhibitors are still often avoided due to the risk of adverse effects. Herein, we replaced the K777 vinyl sulfone group with a nitrile moiety to obtain a reversible covalent inhibitor (Neq0682) of cysteine protease. Then, we used advanced experimental and computational techniques to explore details of the inhibition mechanism of cruzain by reversible and irreversible inhibitors. The isothermal titration calorimetry (ITC) analysis shows that inhibition of cruzain by an irreversible inhibitor is thermodynamically more favorable than by a reversible one. The hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) and Molecular Dynamics (MD) simulations were used to explore the mechanism of the reaction inhibition of cruzain by K777 and Neq0682. The calculated free energy profiles show that the Cys25 nucleophilic attack and His162 proton transfer occur in a single step for a reversible inhibitor and two steps for an irreversible covalent inhibitor. The hybrid QM/MM calculated free energies for the inhibition reaction correspond to -26.7 and -5.9 kcal mol-1 for K777 and Neq0682 at the MP2/MM level, respectively. These results indicate that the ΔG of the reaction is very negative for the process involving K777, consequently, the covalent adduct cannot revert to a noncovalent protein-ligand complex, and its binding tends to be irreversible. Overall, the present study provides insights into a covalent inhibition mechanism of cysteine proteases.


Asunto(s)
Proteasas de Cisteína , Trypanosoma cruzi , Cisteína Endopeptidasas , Inhibidores de Cisteína Proteinasa/farmacología , Proteínas Protozoarias
14.
Bioorg Med Chem ; 28(22): 115743, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33038787

RESUMEN

Leishmania mexicana is an obligate intracellular protozoan parasite that causes the cutaneous form of leishmaniasis affecting South America and Mexico. The cysteine protease LmCPB is essential for the virulence of the parasite and therefore, it is an appealing target for antiparasitic therapy. A library of nitrile-based cysteine protease inhibitors was screened against LmCPB to develop a treatment of cutaneous leishmaniasis. Several compounds are sufficiently high-affinity LmCPB inhibitors to serve both as starting points for drug discovery projects and as probes for target validation. A 1.4 Å X ray crystal structure, the first to be reported for LmCPB, was determined for the complex of this enzyme covalently bound to an azadipeptide nitrile ligand. Mapping the structure-activity relationships for LmCPB inhibition revealed superadditive effects for two pairs of structural transformations. Therefore, this work advances our understanding of azadipeptidyl and dipeptidyl nitrile structure-activity relationships for LmCPB structure-based inhibitor design. We also tested the same series of inhibitors on related cysteine proteases cathepsin L and Trypanosoma cruzi cruzain. The modulation of these mammalian and protozoan proteases represents a new framework for targeting papain-like cysteine proteases.


Asunto(s)
Compuestos Aza/farmacología , Catepsina B/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , Leishmania mexicana/efectos de los fármacos , Tripanocidas/farmacología , Compuestos Aza/síntesis química , Compuestos Aza/química , Catepsina B/metabolismo , Cristalografía por Rayos X , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/química , Dipéptidos/síntesis química , Dipéptidos/química , Dipéptidos/farmacología , Relación Dosis-Respuesta a Droga , Leishmania mexicana/enzimología , Simulación de Dinámica Molecular , Estructura Molecular , Nitrilos/síntesis química , Nitrilos/química , Nitrilos/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/química
15.
Bioorg Chem ; 101: 104039, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32629285

RESUMEN

Cysteine proteases (CPs) are involved in a myriad of actions that include not only protein degradation, but also play an essential biological role in infectious and systemic diseases such as cancer. CPs also act as biomarkers and can be reached by active-based probes for diagnostic and mechanistic purposes that are critical in health and disease. In this paper, we present the modulation of a CP panel of parasites and mammals (Trypanosoma cruzi cruzain, LmCPB, CatK, CatL and CatS), whose inhibition by nitrile peptidomimetics allowed the identification of specificity and selectivity for a given CP. The activity cliffs identified at the CP inhibition level are useful for retrieving trends through multiple structure-activity relationships. For two of the cruzain inhibitors (10g and 4e), both enthalpy and entropy are favourable to Gibbs binding energy, thus overcoming enthalpy-entropy compensation (EEC). Group contribution of individual molecular modification through changes in enthalpy and entropy results in a separate partition on the relative differences of Gibbs binding energy (ΔΔG). Overall, this study highlights the role of CPs in polypharmacology and multi-target screening, which represents an imperative trend in the actual drug discovery effort.


Asunto(s)
Proteasas de Cisteína/química , Animales , Mamíferos , Simulación de Dinámica Molecular , Estructura Molecular , Relación Estructura-Actividad
16.
Int J Mol Sci ; 21(13)2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32640730

RESUMEN

Tyrosinase (TYR) is a metalloenzyme classified as a type-3 copper protein, which is involved in the synthesis of melanin through a catalytic process beginning with the conversion of the amino acid l-Tyrosine (l-Tyr) to l-3,4-dihydroxyphenylalanine (l-DOPA). It plays an important role in the mechanism of melanogenesis in various organisms including mammals, plants, and fungi. Herein, we used a combination of computational molecular modeling techniques including molecular dynamic (MD) simulations and the linear interaction energy (LIE) model to evaluate the binding free energy of a set of analogs of kojic acid (KA) in complex with TYR. For the MD simulations, we used a dummy model including the description of the Jahn-Teller effect for Cu2+ ions in the active site of this enzyme. Our results show that the LIE model predicts the TYR binding affinities of the inhibitor in close agreement to experimental results. Overall, we demonstrate that the classical model provides a suitable description of the main interactions between analogs of KA and Cu2+ ions in the active site of TYR.


Asunto(s)
Bacillus megaterium/enzimología , Cobre/química , Inhibidores Enzimáticos/química , Monofenol Monooxigenasa/química , Pironas/química , Dominio Catalítico , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Monofenol Monooxigenasa/metabolismo
17.
J Chem Inf Model ; 59(6): 2859-2870, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-30924649

RESUMEN

Mammalian AMP-activated protein kinase (AMPK) is a Ser/Thr protein kinase with a key role as a sensor in cellular energy homeostasis. It has a major role in numerous metabolic disorders, such as type 2 diabetes, obesity, and cancer, and hence it has gained progressive interest as a potential therapeutic target. AMPK is a heterotrimeric enzyme composed by an α-catalytic subunit and two regulatory subunits, ß and γ. It is regulated by several mechanisms, including indirect activators such as metformin and direct activators such as compound A-769662. The crystal structure of AMPK bound to A-769662 has been recently reported, suggesting a hypothetical allosteric mechanism of AMPK activation assisted by phosphorylated Ser108 at the ß-subunit. Here, we have studied the direct activation mechanism of A-769662 by means of molecular dynamics simulations, suggesting that the activator may act as a glue, coupling the dynamical motion of the ß-subunit and the N-terminal domain of the α-subunit, and assisting the preorganization of the ATP-binding site. This is achieved through the formation of an allosteric network that connects the activator and ATP-binding sites, particularly through key interactions formed between αAsp88 and ßArg83 and between ßpSer108 and αLys29. Overall, these studies shed light into key mechanistic determinants of the allosteric regulation of this cellular energy sensor, and pave the way for the fine-tuning of the rational design of direct activators of this cellular energy sensor.


Asunto(s)
Adenilato Quinasa/química , Adenilato Quinasa/metabolismo , Simulación de Dinámica Molecular , Regulación Alostérica , Entropía , Activación Enzimática , Multimerización de Proteína , Estructura Cuaternaria de Proteína
18.
Phys Chem Chem Phys ; 21(44): 24723-24730, 2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31680132

RESUMEN

Nitrile reversible covalent inhibitors of human cathepsin L (hCatL) bind covalently to the side chain of the catalytic Cys25 residue in the S1 pocket to form thioimidates. Predicting the binding of reversible covalent inhibitors is essential for their practical application in drug design. In this report, five nitrile-based inhibitors coded Neq0570, Neq0710, Neq0802, Neq0803 and Neq0804 had their hCatL inhibition constants, Ki, determined. These analogs of the prototypical Neq0570 are halogenated reversible covalent inhibitors of hCatL, which bear a halogen atom in the meta position of the P3 benzyl ring that can form a halogen bond with the Gly61 of the hCatL. To describe halogen bonding interaction in an inhibitor-hCatL complex, we applied an extra point (EP) of charge to represent the anisotropic distribution of charge on the iodine, bromine and chlorine atoms. Besides, we have used alchemical free energy calculations for evaluating the overall relative binding free energies of these inhibitors using a two-state binding model: noncovalent and covalent bond states. Our results show that free energy perturbation (FEP) can predict the hCatL binding affinities of halogenated reversible covalent inhibitors in close agreement with experiments.

19.
Molecules ; 24(13)2019 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-31252580

RESUMEN

The synthase, 3-deoxy-d-manno-octulosonate 8-phosphate (KDO8P), is a key enzyme for the lipopolysaccharide (LPS) biosynthesis of gram-negative bacteria and a potential target for developing new antimicrobial agents. In this study, computational molecular modeling methods were used to determine the complete structure of the KDO8P synthase from Neisseria meningitidis and to investigate the molecular mechanism of its inhibition by three bisphosphate inhibitors: BPH1, BPH2, and BPH3. Our results showed that BPH1 presented a protein-ligand complex with the highest affinity, which is in agreement with experimental data. Furthermore, molecular dynamics (MD) simulations showed that BPH1 is more active due to the many effective interactions, most of which are derived from its phosphoenolpyruvate moiety. Conversely, BPH2 exhibited few hydrogen interactions during the MD simulations with key residues located at the active sites of the KDO8P synthase. In addition, we hydroxylated BPH2 to create the hypothetical molecule named BPH3, to investigate the influence of the hydroxyl groups on the affinity of the bisphosphate inhibitors toward the KDO8P synthase. Overall, we discuss the main interactions between the KDO8P synthase and the bisphosphate inhibitors that are potential starting points for the design of new molecules with significant antibiotic activities.


Asunto(s)
Aldehído-Liasas/química , Aldehído-Liasas/metabolismo , Inhibidores Enzimáticos/farmacología , Neisseria meningitidis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Inhibidores Enzimáticos/química , Lipopolisacáridos/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Estructura Molecular , Neisseria meningitidis/efectos de los fármacos , Conformación Proteica , Estereoisomerismo , Especificidad por Sustrato
20.
Phys Chem Chem Phys ; 20(37): 24317-24328, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30211406

RESUMEN

Chagas disease affects millions of people in Latin America. This disease is caused by the protozoan parasite Trypanossoma cruzi. The cysteine protease cruzain is a key enzyme for the survival and propagation of this parasite lifecycle. Nitrile-based inhibitors are efficient inhibitors of cruzain that bind by forming a covalent bond with this enzyme. Here, three nitrile-based inhibitors dubbed Neq0409, Neq0410 and Neq0570 were synthesized, and the thermodynamic profile of the bimolecular interaction with cruzain was determined using isothermal titration calorimetry (ITC). The result suggests the inhibition process is enthalpy driven, with a detrimental contribution of entropy. In addition, we have used hybrid Quantum Mechanical/Molecular Mechanical (QM/MM) and Molecular Dynamics (MD) simulations to investigate the reaction mechanism of reversible covalent modification of cruzain by Neq0409, Neq0410 and Neq0570. The computed free energy profile shows that the nucleophilic attack of Cys25 on the carbon C1 of inhibitiors and the proton transfer from His162 to N1 of the dipeptidyl nitrile inhibitor take place in a single step. The calculated free energy of the inhibiton reaction is in agreement with covalent experimental binding. Altogether, the results reported here suggests that nitrile-based inhibitors are good candidates for the development of reversible covalent inhibitors of cruzain and other cysteine proteases.


Asunto(s)
Cisteína Endopeptidasas/química , Proteasas de Cisteína/química , Inhibidores de Cisteína Proteinasa/química , Nitrilos/síntesis química , Proteínas Protozoarias/química , Tripanocidas/química , Trypanosoma cruzi/enzimología , Diseño de Fármacos , Simulación de Dinámica Molecular , Unión Proteica , Teoría Cuántica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA