Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Sci Food Agric ; 103(8): 4164-4173, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36585953

RESUMEN

BACKGROUND: Co-encapsulation of probiotics and omega-3 oil using complex coacervation is an effective method for enhancing the tolerance of probiotics under adverse conditions, whereas complex coacervation of omega-3 oil was found to have low lipid digestibility. In the present study, gelatin (GE, 30 g kg-1 ) and gum arabic (GA, 30 g kg-1 ) were used to encapsulate Lactobacillus plantarum WCFS1 and algal oil by complex coacervation to produce microcapsules containing probiotics (GE-P-GA) and co-microcapsules containing probiotics and algal oil (GE-P-O-GA), and soy lecithin (SL) was added to probiotics-algal oil complex coacervates [GE-P-O(SL)-GA] to enhance its stability and lipolysis. Then, we evaluated the viability of different microencapsulated probiotics exposed to freeze-drying and long-term storage, as well as the survival rate and release performance of encapsulated probiotics and algal oil during in vitro digestion. RESULTS: GE-P-O(SL)-GA had a smaller particle size (51.20 µm), as well as higher freeze-drying survival (90.06%) of probiotics and encapsulation efficiency of algal oil (75.74%). Moreover, GE-P-O(SL)-GA showed a higher algal oil release rate (79.54%), lipolysis degree (74.63%) and docosahexaenoic acid lipolysis efficiency (64.8%) in the in vitro digestion model. The viability of microencapsulated probiotics after simulated digestion and long-term storage at -18,4 and 25 °C was in the order: GE-P-O(SL)-GA > GE-P-O-GA > GE-P-GA. CONCLUSION: As a result of its amphiphilic properties, SL strongly affected the physicochemical properties of probiotics and algal oil complex coacervates, resulting in higher stability and more effective lipolysis. Thus, the GE-P-O(SL)-GA can more effectively deliver probiotics and docosahexaenoic acid to the intestine, which provides a reference for the preparation of high-viability and high-lipolysis probiotics-algal oil microcapsules. © 2022 Society of Chemical Industry.


Asunto(s)
Lecitinas , Probióticos , Ácidos Docosahexaenoicos , Cápsulas/química , Lipólisis , Probióticos/química , Composición de Medicamentos/métodos
2.
J Chem Inf Model ; 62(9): 2248-2256, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-34873908

RESUMEN

Traditionally, it is believed that the substrate and products of a monoacylglycerol lipase (MGL) share the same path to enter and exit the catalytic site. Glycerol (a product of MGL), however, was recently hypothesized to be released through a different path. In order to improve the catalytic efficacy and thermo-stability of MGL, it is important to articulate the pathways of a MGL products releasing. In this study, with structure biological approaches, biochemical experiments, and in silico methods, we prove that glycerol is released from a different path in the catalytic site indeed. The fatty acid (another product of MGL) does share the same binding path with the substrate. This discovery paves a new road to design MGL inhibitors or optimize MGL catalytic efficacy.


Asunto(s)
Glicerol , Monoacilglicerol Lipasas , Catálisis , Dominio Catalítico , Lipasa/metabolismo , Monoacilglicerol Lipasas/química , Monoacilglicerol Lipasas/metabolismo
3.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232934

RESUMEN

A new phospholipase D from marine Moritella sp. JT01 (MsPLD) was recombinantly expressed and biochemically characterized. The optimal reaction temperature and pH of MsPLD were determined to be 35 °C and 8.0. MsPLD was stable at a temperature lower than 35 °C, and the t1/2 at 4 °C was 41 days. The crystal structure of apo-MsPLD was resolved and the functions of a unique extra loop segment on the enzyme activity were characterized. The results indicated that a direct deletion or fastening of the extra loop segment by introducing disulfide bonds both resulted in a complete loss of its activity. The results of the maximum insertion pressure indicated that the deletion of the extra loop segment significantly decreased MsPLD's interfacial binding properties to phospholipid monolayers. Finally, MsPLD was applied to the synthesis of phosphatidic acid by using a biphasic reaction system. Under optimal reaction conditions, the conversion rate of phosphatidic acid reached 86%. The present research provides a foundation for revealing the structural-functional relationship of this enzyme.


Asunto(s)
Moritella , Fosfolipasa D , Cristalización , Disulfuros , Ácidos Fosfatidicos/metabolismo , Fosfolipasa D/metabolismo
4.
Bioprocess Biosyst Eng ; 44(3): 627-634, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33159545

RESUMEN

In this study, α-linolenic acid-enriched diacylglycerols (ALA-DAGs) were prepared via a two-step enzymatic way by combi-lipase using silkworm pupae oils as substrates. Firstly, several factors including temperature, mass ratio of water to oil, pH and enzyme loading were optimized for the hydrolysis of silkworm pupae oil. The maximum fatty acid content (96.51%) was obtained under the conditions: temperature 40 °C, water/oil 3:2 (w/w), pH 7, lipase TL100L loading 400 U/g, lipase PCL loading 30 U/g. Then, ALA was enriched by urea inclusion, with an increased ALA content of 82.50% being obtained. Secondly, the ALA-enriched silkworm pupae DAG oil (SPDO) was prepared by lipase PCL-catalyzed esterification reaction. After molecular distillation, the final SPDO product contained contents of DAGs (97.01%) and ALA (82.50%). This two-step enzymatic way for production of ALA-DAGs was successfully applied in a 100-fold scale-up reaction. Overall, our study provides a promising way for the preparation of ALA-DAGs.


Asunto(s)
Bombyx/química , Diglicéridos , Lipasa/química , Aceites/química , Pupa/química , Ácido alfa-Linolénico/química , Animales , Diglicéridos/síntesis química , Diglicéridos/química
5.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638918

RESUMEN

Mining of phospholipase D (PLD) with altered acyl group recognition except its head group specificity is also useful in terms of specific acyl size phospholipid production and as diagnostic reagents for quantifying specific phospholipid species. Microbial PLDs from Actinomycetes, especially Streptomyces, best fit this process requirements. In the present studies, a new PLD from marine Streptomyces klenkii (SkPLD) was purified and biochemically characterized. The optimal reaction temperature and pH of SkPLD were determined to be 60 °C and 8.0, respectively. Kinetic analysis showed that SkPLD had the relatively high catalytic efficiency toward phosphatidylcholines (PCs) with medium acyl chain length, especially 12:0/12:0-PC (67.13 S-1 mM-1), but lower catalytic efficiency toward PCs with long acyl chain (>16 fatty acids). Molecular docking results indicated that the different catalytic efficiency was related to the increased steric hindrance of long acyl-chains in the substrate-binding pockets and differences in hydrogen-bond interactions between the acyl chains and substrate-binding pockets. The enzyme displayed suitable transphosphatidylation activity and the reaction process showed 26.18% yield with L-serine and soybean PC as substrates. Present study not only enriched the PLD enzyme library but also provide guidance for the further mining of PLDs with special phospholipids recognition properties.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fosfatidilserinas/metabolismo , Fosfolipasa D/metabolismo , Streptomyces/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Concentración de Iones de Hidrógeno , Cinética , Simulación del Acoplamiento Molecular , Fosfatidilcolinas/metabolismo , Fosfolipasa D/química , Fosfolipasa D/genética , Fosfolípidos/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Agua de Mar/microbiología , Homología de Secuencia de Aminoácido , Streptomyces/genética , Especificidad por Sustrato , Temperatura
6.
BMC Evol Biol ; 19(1): 76, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30866798

RESUMEN

BACKGROUND: Unspecific peroxygenases (UPO) (EC 1.11.2.1) represent an intriguing oxidoreductase sub-subclass of heme proteins with peroxygenase and peroxidase activity. With over 300 identified substrates, UPOs catalyze numerous oxidations including 1- or 2- electron oxygenation, selective oxyfunctionalizations, which make them most significant in organic syntheses and potentially attractive as industrial biocatalysts. There are very few UPOs available with distinct properties, notably, MroUPO which shows behavior ranging between UPO and another heme-thiolate peroxidase, called Chloroperoxidase (CPO). It prompted us to search for more UPOs in fungal kingdom which led us to studying their relationship with CPO. RESULTS: In this study, we searched for novel UPOs in more than 800 fungal genomes and found 113 putative UPO-encoding sequences distributed in 35 different fungal species (or strains), amongst which single sequence per species were subjected to phylogeny study along with CPOs. Our phylogenetic study show that the UPOs are distributed in Basidiomycota and Ascomycota phyla of fungi. The sequence analysis helped to classify the UPOs into five distinct subfamilies: classic AaeUPO and four new subfamilies with potential new traits. We have also shown that each of these five subfamilies (supported by) have their own signature motifs. Surprisingly, some of the CPOs appeared to be a type of UPOs indicating that they were previously identified incorrectly. Selection pressure was observed on important motifs in UPOs which could have driven their functional divergence. Furthermore, the sites having different evolutionary rates caused by the functional divergence were also identified on some motifs along with the other relevant amino acid residues. Finally, we predicted critical amino acids responsible for the functional divergence in the UPOs and identified some sequence differences among UPOs, CPOs, and MroUPO to predict it's ranging behavior. CONCLUSION: This study discovers new UPOs, provides a glimpse of their evolution from CPOs, and presents new insight on their functional divergence. We present a new classification of UPOs and shed new light on its phylogenetics. These different UPOs may exhibit a wide range of characteristics and specificities which may help in various fields of synthetic chemistry and industrial biocatalysts, and may as well lead to an advancement towards the understanding of physiological role of UPOs in fungi.


Asunto(s)
Evolución Molecular , Oxigenasas de Función Mixta/metabolismo , Familia de Multigenes , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Ascomicetos/enzimología , Basidiomycota/enzimología , Secuencia Conservada , Variación Genética , Funciones de Verosimilitud , Oxigenasas de Función Mixta/química , Filogenia , Selección Genética
7.
Int J Mol Sci ; 20(3)2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30759774

RESUMEN

Lipases with unique substrate specificity are highly desired in biotechnological applications. In this study, a putative marine Geobacillus sp. monoacylglycerol lipase (GMGL) encoded gene was identified by a genomic mining strategy. The gene was expressed in Escherichia coli as a His-tag fusion protein and purified by affinity chromatography with a yield of 264 mg per liter fermentation broth. The recombinant GMGL shows the highest hydrolysis activity at 60 °C and pH 8.0, and the half-life was 60 min at 70 °C. The GMGL is active on monoacylglycerol (MAG) substrate but not diacylglycerol (DAG) or triacylglycerol (TAG), and produces MAG as the single product in the esterification reaction. Modeling structure analysis showed that the catalytic triad is formed by Ser97, Asp196 and His226, and the flexible cap region is constituted by residues from Ala120 to Thr160. A mutagenesis study on Leu142, Ile145 and Ile170 located in the substrate binding tunnel revealed that these residues were related with its substrate specificity. The kcat/Km value toward the pNP-C6 substrate in mutants Leu142Ala, Ile145Ala and Ile170Phe increased to 2.3-, 1.4- and 2.2-fold as compared to that of the wild type, respectively.


Asunto(s)
Geobacillus/genética , Monoacilglicerol Lipasas/genética , Mutagénesis/genética , Secuencia de Aminoácidos , Catálisis , Clonación Molecular/métodos , Diglicéridos/genética , Escherichia coli/genética , Esterificación/genética , Concentración de Iones de Hidrógeno , Hidrólisis , Proteínas Recombinantes/genética , Alineación de Secuencia , Especificidad por Sustrato/genética , Triglicéridos/genética
8.
Int J Mol Sci ; 20(4)2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30781686

RESUMEN

Recent studies revealed the role of lipase in the pathogenicity of Malassezia restricta in dandruff and seborrheic dermatitis (D/SD). The lipase from M. restricta (Mrlip1) is considered a potential target for dandruff therapy. In this work, we performed structure-based virtual screening in Zinc database to find the natural bioactive inhibitors of Mrlip1. We identified three compounds bearing superior affinity and specificity from the Traditional Chinese Medicine database (~60,000 compounds), and their binding patterns with Mrlip1 were analyzed in detail. Additionally, we performed three sets of 100 ns MD simulations of each complex in order to understand the interaction mechanism of Mrlip1 with known inhibitor RHC80267 and the newly identified compounds such as ZINC85530919, ZINC95914464 and ZINC85530320, respectively. These compounds bind to the active site cavity and cause conformational changes in Mrlip1. The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) studies suggested that the average binding energy was stronger in the case of Mrlip1-ZINC85530919 and Mrlip1-ZINC95914464. The selected natural inhibitors might act as promising lead drugs against Mrlip1. Further, the present study will contribute to various steps involved in developing and creating potent drugs for several skin diseases including dandruff.


Asunto(s)
Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Lipasa/antagonistas & inhibidores , Malassezia/enzimología , Simulación de Dinámica Molecular , Dominio Catalítico , Enlace de Hidrógeno , Ligandos , Lipasa/química , Lipasa/metabolismo , Simulación del Acoplamiento Molecular , Análisis de Componente Principal , Estructura Secundaria de Proteína , Solventes , Termodinámica
9.
Biochem Biophys Res Commun ; 500(3): 639-644, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29679572

RESUMEN

Penicillium camembertii (PCL), a mono- and di-acylglycerol lipase (DGL), has the vital potential in the oil chemistry for food industry. However, known DGLs are mesophilic enzymes which restricts its application in the industry. To improve thermostability of PCL, we used amino acid substitution by comparison of amino acids compositions of PCL and protein sequences from typical thermophilic bacteria. Then, some conservative residues around active center were avoided to mutate according to homologous alignment analyses. Furthermore, the list was narrowed down to 28 candidate mutational sites of PCL by analyzing the hydrophobic interaction of amino acids in the structure. And among them only the mutant PCL-D25R had formed an additional salt bridge between R25-D32 and increased more hydrogen bonds interaction. Therefore, mutant PCL-D25R were constructed and expressed. Thermal inactivation assay showed that the half-life of mutant PCL-D25R at 45 °C increased 4-fold compared to that of PCL-WT. Melting temperature of mutant PCL-D25R increased to 49.5 °C from 46.5 °C by fluorescence-based thermal stability assay. This study provides a valuable strategy for engineering DGL thermostability.


Asunto(s)
Monoacilglicerol Lipasas/metabolismo , Penicillium/enzimología , Ingeniería de Proteínas/métodos , Temperatura , Estabilidad de Enzimas , Cinética , Simulación de Dinámica Molecular , Monoacilglicerol Lipasas/química , Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/aislamiento & purificación , Proteínas Mutantes/química , Proteínas Mutantes/aislamiento & purificación , Mutación/genética
10.
Biochem Biophys Res Commun ; 488(2): 259-265, 2017 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-28433636

RESUMEN

Lipases play an important role in physiological metabolism and diseases, and also have multiple industrial applications. Rational modification of lipase specificity may increase the commercial utility of this group of enzymes, but is hindered by insufficient mechanistic understanding. Here, we report the 2.0 Å resolution crystal structure of a mono- and di-acylglycerols lipase from Malassezia globosa (MgMDL2). Interestingly, residues Phe278 and Glu282 were found to involve in substrate recognition because mutation on each residue led to convert MgMDL2 to a triacylglycerol (TAG) lipase. The Phe278Ala and Glu282Ala mutants also acquired ability to synthesize TAGs by esterification of glycerol and fatty acids. By in silicon analysis, steric hindrance of these residues seemed to be key factors for the altered substrate specificity. Our work may shed light on understanding the unique substrate selectivity mechanism of mono- and di-acylglycerols lipases, and provide a new insight for engineering biocatalysts with desired catalytic behaviors for biotechnological application.


Asunto(s)
Lipasa/química , Lipasa/metabolismo , Malassezia/enzimología , Cristalografía por Rayos X , Modelos Moleculares , Especificidad por Sustrato
11.
Appl Microbiol Biotechnol ; 101(14): 5689-5697, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28516207

RESUMEN

Green technologies are attracting increasing attention in industrial chemistry where enzymatic reactions can replace dangerous and environmentally unfriendly chemical processes. In situ enzymatic synthesis of peroxycarboxylic acid is an attractive alternative for several industrial applications although concentrated H2O2 can denature the biocatalyst, limiting its usefulness. Herein, we report the structure-guided engineering of the Pyrobaculum calidifontis esterase (PestE) substrate binding site to increase its stability and perhydrolysis activity. The L89R/L40A PestE mutant showed better tolerance toward concentrated H2O2 compared with wild-type PestE, and retained over 72% of its initial activity after 24-h incubation with 2 M H2O2. Surprisingly, the half-life (t 1/2, 80 °C) of PestE increased from 28 to 54 h. The k cat/K m values of the mutant increased 21- and 3.4-fold toward pentanoic acid and H2O2, respectively. This work shows how protein engineering can be used to enhance the H2O2 resistance and catalytic efficiency of an enzyme.


Asunto(s)
Esterasas/química , Esterasas/metabolismo , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Ingeniería de Proteínas/métodos , Pyrobaculum/enzimología , Sitios de Unión , Biocatálisis , Catálisis , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Estabilidad de Enzimas , Semivida , Hidrólisis , Modelos Moleculares , Ácidos Pentanoicos/metabolismo , Pyrobaculum/efectos de los fármacos , Pyrobaculum/genética , Especificidad por Sustrato
12.
Biotechnol Appl Biochem ; 63(1): 41-50, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25639796

RESUMEN

A screening method along with the combination of genome sequence of microorganism, pairwise alignment, and lipase classification was used to search the thermostable lipase. Then, a potential thermostable lipase (named MAS1) from marine Streptomyces sp. strain W007 was expressed in Pichia pastoris X-33, and the biochemical properties were characterized. Lipase MAS1 belongs to the subfamily I.7, and it has 38% identity to the well-characterized Bacillus subtilis thermostable lipases in the subfamily I.4. The purified enzyme was estimated to be 29 kDa. The enzyme showed optimal temperature at 40 °C, and retained more than 80% of initial activity after 1 H incubation at 60 °C, suggesting that MAS1 was a thermostable lipase. MAS1 was an alkaline enzyme with optimal pH value at 7.0 and had stable activity for 12 H of incubation at pH 6.0-9.0. It was stable and retained about 90% of initial activity in the presence of Cu(2+) , Ca(2+) , Ni(2+) , and Mg(2+) , whereas 89.05% of the initial activity was retained when ethylene diamine tetraacetic acid was added. MAS1 showed the tolerance to organic solvents, but was inhibited by various surfactants. MAS1 was verified to be a triglyceride lipase and could hydrolyze triacylglycerol and diacylglycerol. The result represents a good example for researchers to discover thermostable lipase for industrial application.


Asunto(s)
Lipasa/química , Lipasa/metabolismo , Streptomyces/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas , Clonación Molecular , Estabilidad de Enzimas , Lipasa/genética , Datos de Secuencia Molecular , Filogenia , Pichia/genética , Alineación de Secuencia , Streptomyces/química , Streptomyces/genética , Especificidad por Sustrato , Temperatura
13.
Chembiochem ; 16(10): 1431-4, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-25955297

RESUMEN

Despite the fact that most lipases are believed to be active against triacylglycerides, there is a small group of lipases that are active only on mono- and diacylglycerides. The reason for this difference in substrate scope is not clear. We tried to identify the reasons for this in the lipase from Malassezia globosa. By protein engineering, and with only one mutation, we managed to convert this enzyme into a typical triacylglycerol lipase (the wild-type lipase does not accept triacylglycerides). The variant Q282L accepts a broad spectrum of triacylglycerides, although the catalytic behavior is altered to some extent. From in silico analysis it seems that specific hydrophobic interactions are key to the altered substrate specificity.


Asunto(s)
Lipasa/genética , Lipoproteína Lipasa/genética , Malassezia/enzimología , Monoacilglicerol Lipasas/genética , Mutación Puntual , Ingeniería de Proteínas , Dominio Catalítico , Lipasa/química , Lipasa/metabolismo , Lipoproteína Lipasa/química , Lipoproteína Lipasa/metabolismo , Malassezia/química , Malassezia/genética , Malassezia/metabolismo , Modelos Moleculares , Monoacilglicerol Lipasas/química , Monoacilglicerol Lipasas/metabolismo , Especificidad por Sustrato
14.
Int J Mol Sci ; 16(3): 4865-79, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25749469

RESUMEN

Diacylglycerol (DAG)-like lipases are found to play an important role in the life sciences and industrial fields. A putative DAG-like lipase (MgMDL2) from Malassezia globosa was cloned and expressed in recombinant Pichia pastoris. The recombinant MgMDL2 was expressed as a glycosylated protein and purified into homogeneity by anion exchange chromatography. The activity of recombinant MgMDL2 was optimal at 15 °C and pH 6.0, and it keeps over 50% of relative activity at 5 °C, suggesting that MgMDL2 was a cold active lipase. MgMDL2 retained over 80% of initial activity after incubation at 30 and 40 °C for 2.5 h, but it was not stable at 50 °C. Incubation of methanol and ethanol at a concentration of 30% for 2 h did not affect the recombinant enzyme activity, while metal ions, including Ca2+, Mn2+ and Ni2+, sharply inhibited the MgMDL2 activity at 5 mM by 42%, 35% and 36%, respectively. MgMDL2 exhibited a preference for medium chain-length esters with highest activity toward p-nitrophenyl caprylate, while it was active on mono- and diacylglycerol but not on triacylglycerol, indicating that it was a typical DAG-like lipase. By homology modeling, Phe278 was predicted to be involved in the preference of MgMDL2 for monoacyl- and diacyl-glyceride substrates, but not triglycerides.


Asunto(s)
Lipoproteína Lipasa/química , Malassezia/enzimología , Secuencia de Aminoácidos , Sitios de Unión , Caprilatos/química , Caprilatos/metabolismo , Diglicéridos/metabolismo , Etanol/química , Concentración de Iones de Hidrógeno , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Metales/química , Metanol/química , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Pichia/metabolismo , Estabilidad Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia , Especificidad por Sustrato , Temperatura
15.
Int J Mol Sci ; 16(4): 7273-88, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25837472

RESUMEN

Thermostability and substrate specificity are important characteristics of enzymes for industrial application, which can be improved by protein engineering. SMG1 lipase from Malassezia globosa is a mono- and diacylglycerol lipase (MDL) that shows activity toward mono- and diacylglycerols, but no activity toward triacylglycerols. SMG1 lipase is considered a potential biocatalyst applied in oil/fat modification and its crystal structure revealed that an interesting residue-Asn277 may contribute to stabilize loop 273-278 and the 3104 helix which are important to enzyme characterization. In this study, to explore its role in affecting the stability and catalytic activity, mutagenesis of N277 with Asp (D), Val (V), Leu (L) and Phe (F) was conducted. Circular dichroism (CD) spectral analysis and half-life measurement showed that the N277D mutant has better thermostability. The melting temperature and half-life of the N277D mutant were 56.6 °C and 187 min, respectively, while that was 54.6 °C and 121 min for SMG1 wild type (WT). Biochemical characterization of SMG1 mutants were carried out to test whether catalytic properties were affected by mutagenesis. N277D had similar enzymatic properties as SMG1 WT, but N277F showed a different substrate selectivity profile as compared to other SMG1 mutants. Analysis of the SMG1 3D model suggested that N277D formed a salt bridge via its negative charged carboxyl group with a positively charged guanidino group of R227, which might contribute to confer N277D higher temperature stability. These findings not only provide some clues to understand the molecular basis of the lipase structure/function relationship but also lay the framework for engineering suitable MDL lipases for industrial applications.


Asunto(s)
Lipoproteína Lipasa/metabolismo , Malassezia/metabolismo , Catálisis , Diglicéridos/genética , Diglicéridos/metabolismo , Semivida , Cinética , Lipoproteína Lipasa/genética , Malassezia/genética , Mutagénesis/genética , Ingeniería de Proteínas/métodos , Estabilidad Proteica , Especificidad por Sustrato , Temperatura , Triglicéridos/genética , Triglicéridos/metabolismo
16.
Int J Mol Sci ; 15(6): 10554-66, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24927145

RESUMEN

Mono- and di-acylglycerol lipase has been applied to industrial usage in oil modification for its special substrate selectivity. Until now, the reported mono- and di-acylglycerol lipases from microorganism are limited, and there is no report on the mono- and di-acylglycerol lipase from bacteria. A predicted lipase (named MAJ1) from marine Janibacter sp. strain HTCC2649 was purified and biochemical characterized. MAJ1 was clustered in the family I.7 of esterase/lipase. The optimum activity of the purified MAJ1 occurred at pH 7.0 and 30 °C. The enzyme retained 50% of the optimum activity at 5 °C, indicating that MAJ1 is a cold-active lipase. The enzyme activity was stable in the presence of various metal ions, and inhibited in EDTA. MAJ1 was resistant to detergents. MAJ1 preferentially hydrolyzed mono- and di-acylglycerols, but did not show activity to triacylglycerols of camellia oil substrates. Further, MAJ1 is low homologous to that of the reported fungal diacylglycerol lipases, including Malassezia globosa lipase 1 (SMG1), Penicillium camembertii lipase U-150 (PCL), and Aspergillus oryzae lipase (AOL). Thus, we identified a novel cold-active bacterial lipase with a sn-1/3 preference towards mono- and di-acylglycerides for the first time. Moreover, it has the potential, in oil modification, for special substrate selectivity.


Asunto(s)
Actinomycetales/enzimología , Proteínas Bacterianas/metabolismo , Lipoproteína Lipasa/metabolismo , Monoacilglicerol Lipasas/metabolismo , Actinomycetales/clasificación , Secuencia de Aminoácidos , Aspergillus/clasificación , Aspergillus/enzimología , Proteínas Bacterianas/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Concentración de Iones de Hidrógeno , Lipoproteína Lipasa/química , Datos de Secuencia Molecular , Monoacilglicerol Lipasas/química , Penicillium/clasificación , Penicillium/enzimología , Filogenia , Estabilidad Proteica , Alineación de Secuencia , Solventes/química , Especificidad por Sustrato , Temperatura
17.
J Sci Food Agric ; 94(8): 1614-21, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24338705

RESUMEN

BACKGROUND: T1 lipase has received considerable attention due to its thermostability. Fatty acid specificity of T1 lipase (crude and purified) was investigated, and its potential in the synthesis of acylglycerols was also evaluated. RESULTS: Fatty acid specificity of T1 lipase (crude and purified) was investigated in the esterification of fatty acids (C6:0 to C18:3), suggesting that crude and purified T1 lipase had the lowest preference for C18:0 [specificity constant (1/α) = 0.08] followed by C18:1 (1/α = 0.12) and showed the highest preference for C8:0 (1/α = 1). A structural model was constructed to briefly explore interactions between the lipase and its substrate. Furthermore, crude T1 lipase-catalysed synthesis of diacylglycerols (DAGs) and monoacylglycerols (MAGs) by esterification of glycerol with C18:1 was studied for evaluating its potential in acylglycerols synthesis. The optimal conditions were glycerol/oleic acid molar ratio 5:1, the lipase concentration 9.7 U g(-1) of substrates, water content 50 g kg(-1) of substrates and temperature 50 °C, which yielded 42.25% DAGs, 26.34% MAGs and 9.18% triacylglycerols at 2 h. CONCLUSION: DAGs and MAGs were synthesised in good yields although C18:1 (a much poorer substrate) was used. Our work demonstrates that T1 lipase, which was discovered to show 1,3-regio-selectivity, is a promising biocatalyst for lipids modification.


Asunto(s)
Ácidos Grasos/metabolismo , Glicéridos/biosíntesis , Lipasa/metabolismo , Sitios de Unión , Caprilatos/metabolismo , Diglicéridos/biosíntesis , Estabilidad de Enzimas , Esterificación , Geobacillus/enzimología , Calor , Cinética , Modelos Moleculares , Monoglicéridos/biosíntesis , Especificidad por Sustrato
18.
J Oleo Sci ; 73(8): 1045-1055, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39085081

RESUMEN

Docosahexaenoic acid plays a crucial role in infant brain function, and the market demand of high-purity docosahexaenoic acid is continuously increasing. The availability of docosahexaenoic acid in natural fish oil is limited, prompting the exploration of alternative sources like microalgae. For algal oil, enzymatic ethanolysis is preferred to chemical methods because the former is milder and can avoid docosahexaenoic acid oxidation. However, enzymatic methods have generally low yield due to the poor substrate-specificity of lipase to long-chain polyunsaturated fatty acids, affecting the yield and purity of docosahexaenoic acid. Therefore, we developed an efficient process to produce high-purity docosahexaenoic acid ethyl ester from algal oil, by screening lipases, optimizing enzymatic ethanolysis and applying molecular distillation. Lipase UM1 was the best lipase to produce ethyl ester from algal oil with the highest ethyl ester yield (95.41%). Meanwhile, it was a catalyst for the reaction of long-chain polyunsaturated fatty acids with ethanol. The fatty acid docosahexaenoic acid conversion rates exceeded 90%. After molecular distillation, a final product containing 96.52% ethyl ester was obtained with a docosahexaenoic acid content up to 80.11%. Our findings provide an highly effective enzymatic method for the production of high-purity docosahexaenoic acid ethyl esters, with potential commercial applications.


Asunto(s)
Ácidos Docosahexaenoicos , Ésteres , Etanol , Lipasa , Ácidos Docosahexaenoicos/aislamiento & purificación , Ácidos Docosahexaenoicos/química , Lipasa/metabolismo , Lipasa/química , Ésteres/química , Etanol/química , Microalgas/química , Aceites de Pescado/química , Destilación/métodos , Esterificación , Biocatálisis
19.
Food Chem ; 456: 139624, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38850608

RESUMEN

The limited availability of phospholipase A1 (PLA1) has posed significant challenges in enzymatic degumming. In this study, a novel PLA1 (UM2) was introduced to address this limitation, which had a unique thermo-responsive ability to switch phospholipase and lipase activities in response to temperature variations. Remarkably, UM2 displayed an unprecedented selectivity under optimized conditions, preferentially hydrolyzing phospholipids over triacylglycerols-a specificity superior to that of commercial PLA1. Moreover, UM2 demonstrated high efficiency in hydrolyzing phospholipids with a predilection for phosphatidylcholine (PC) and phosphatidylethanolamine (PE). A practical application of UM2 on crude flaxseed oil led to a dramatic reduction in phosphorus content, plummeting from an initial 384.06 mg/kg to 4.38 mg/kg. Broadening its industrial applicability, UM2 effectively performed enzymatic degumming for other distinct crude vegetable oils with a unique phospholipid composition. Collectively, these results highlighted the promising application of UM2 in the field of oil degumming.


Asunto(s)
Fosfolipasas A1 , Fosfolípidos , Fosfolipasas A1/química , Fosfolipasas A1/metabolismo , Fosfolípidos/química , Fosfolípidos/metabolismo , Hidrólisis , Aceite de Linaza/química , Lipasa/química , Lipasa/metabolismo , Calor , Estabilidad de Enzimas , Biocatálisis , Especificidad por Sustrato , Aceites de Plantas/química , Temperatura
20.
Curr Res Food Sci ; 8: 100770, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860263

RESUMEN

The objective of this work was to completely replace margarine with peanut diacylglycerol oil/ethyl cellulose-glycerol monostearate oleogel (DEC/GMS) oleogel, and evaluate its effect on starch digestibility of cakes. The in vitro digestibility analysis demonstrated that the DEC/GMS-6 cake exhibited a 26.36% increase in slowly digestible starch (SDS) and resistant starch (RS) contents, compared to cakes formulated with margarine. The increased SDS and RS contents might mainly be due to the hydrophobic nature of OSA-wheat flour, which could promote the formation of lipid-amylose complexes with GMS and peanut diacylglycerol oil. XRD pattern suggested that the presence of GMS in DEC-based oleogels facilitated the formation of lipid-amylose complexes. The DSC analysis revealed that the addition of GMS resulted in a significant increase in gelatinization enthalpy, rising from 249.7 to 551.9 J/g, which indicates an improved resistance to gelatinization. The FTIR spectra indicated that the combination of GMS could enhance the hydrogen bonding forces and short-range ordered structure in DEC-based cakes. The rheological analysis revealed that an increase in GMS concentration resulted in enhanced viscoelasticity of DEC-based cake compared to TEC-based cakes. The DEC-based cakes exhibited a more satisfactory texture profile and higher overall acceptability than those of TEC-based cakes. Overall, these findings demonstrated that the utilization of DEC-based oleogel presented a viable alternative to commercial margarine in the development of cakes with reduced starch digestibility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA