Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
BMC Genomics ; 20(1): 390, 2019 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-31109305

RESUMEN

BACKGROUND: Phytohormones are key regulators of plant growth, development, and signalling networks involved in responses to diverse biotic and abiotic stresses. Transcriptional reference maps of hormone responses have been reported for several model plant species such as Arabidopsis thaliana, Oryza sativa, and Brachypodium distachyon. However, because of species differences and the complexity of the wheat genome, these transcriptome data are not appropriate reference material for wheat studies. RESULTS: We comprehensively analysed the transcriptomic responses in wheat spikes to seven phytohormones, including indole acetic acid (IAA), gibberellic acid (GA), abscisic acid (ABA), ethylene (ET), cytokinin (CK), salicylic acid (SA), and methyl jasmonic acid (MeJA). A total of 3386 genes were differentially expressed at 24 h after the hormone treatments. Furthermore, 22.7% of these genes exhibited overlapping transcriptional responses for at least two hormones, implying there is crosstalk among phytohormones. We subsequently identified genes with expression levels that were significantly and differentially induced by a specific phytohormone (i.e., hormone-specific responses). The data for these hormone-responsive genes were then compared with the transcriptome data for wheat spikes exposed to biotic (Fusarium head blight) and abiotic (water deficit) stresses. CONCLUSION: Our data were used to develop a transcriptional reference map of hormone responses in wheat spikes.


Asunto(s)
Reguladores del Crecimiento de las Plantas/farmacología , Transcriptoma , Triticum/genética , Deshidratación/genética , Deshidratación/metabolismo , Flores/efectos de los fármacos , Flores/genética , Flores/metabolismo , Fusarium , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Transcriptoma/efectos de los fármacos , Triticum/efectos de los fármacos , Triticum/metabolismo , Triticum/microbiología
2.
New Phytol ; 224(2): 961-973, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31168798

RESUMEN

De-domestication is a unique evolutionary process during which crops re-acquire wild-like traits to survive and persist in agricultural fields without the need for human cultivation. The re-acquisition of seed dispersal mechanisms is crucial for crop de-domestication. Common wheat is an important cereal crop worldwide. Tibetan semi-wild wheat is a potential de-domesticated common wheat subspecies. However, the crucial genes responsible for its brittle rachis trait have not been identified. Genetic mapping, functional analyses and phylogenetic analyses were completed to identify the gene associated with Qbr.sau-5A, which is a major locus for the brittle rachis trait of Tibetan semi-wild wheat. The cloned Qbr.sau-5A gene is a new Q allele (Qt ) with a 161-bp transposon insertion in exon 5. Although Qt is expressed normally, its encoded peptide lacks some key features of the APETALA2 family. The abnormal functions of Qt in developing wheat spikes result in brittle rachises. Phylogenetic and genotyping analyses confirmed that Qt originated from Q in common wheat and is naturally distributed only in Tibetan semi-wild wheat populations. The identification of Qt provides new evidence regarding the origin of Tibetan semi-wild wheat, and new insights into the re-acquisition of wild traits during crop de-domestication.


Asunto(s)
Elementos Transponibles de ADN/genética , ADN de Plantas/genética , Mutagénesis Insercional/genética , Triticum/genética , Triticum/fisiología , Evolución Biológica , Mapeo Cromosómico , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sitios de Carácter Cuantitativo
3.
Genome ; 61(3): 201-208, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29401409

RESUMEN

We evaluated the SGP-1 protein composition of 368 Chinese wheat landraces using SDS-PAGE. The SGP-D1 null type was identified in three accessions (Xiaoqingmang, Pushanbamai, and P119). An 18-bp deletion and 9-bp variation were found at the junction region of the 7th intron and 8th exon, leading to deletion of the intron-exon junction recognition site AG when aligned the 8261-bp DNA sequence of TaSSIIa-D in Pushanbamai with that of Chinese Spring. Four cDNA types with mis-spliced isoforms were subsequently detected through amplification of TaSSIIa-D cDNAs. Among these, nine type II cDNAs with a 16-bp deletion in the 8th exon were detected, indicating that the major transcriptional pattern of TaSSIIa in Pushanbamai is type II. In the type IV cDNA, a 97-bp sequence remains undeleted in the end of the 5th exon. The amylose content in Pushanbamai was significantly higher than that in all control lines under field conditions, which suggested that deletion of SGP-D1 has an efficient impact on amylose content. As the TaSSIIa gene plays an important role in regulating the content of amylose, it is anticipated that these natural variants of TaSSIIa-D will provide useful resources for quality improvement in wheat.


Asunto(s)
Empalme Alternativo , Proteínas de Plantas/genética , Almidón Sintasa/genética , Triticum/genética , Amilosa/metabolismo , Proteínas de Plantas/metabolismo , Almidón Sintasa/deficiencia , Almidón Sintasa/metabolismo , Triticum/enzimología
4.
Int J Mol Sci ; 19(8)2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-30103374

RESUMEN

ATP-binding cassette (ABC) transporters hydrolyze ATP to transport a wide range of substrates. Fusarium graminearum is a major causal agent of Fusarium head blight, which is a severe disease in wheat worldwide. FgABCC9 (FG05_07325) encodes an ABC-C (ABC transporter family C) transporter in F. graminearum, which was highly expressed during the infection in wheat and was up-regulated by the plant defense hormone salicylic acid (SA) and the fungicide tebuconazole. The predicted tertiary structure of the FgABCC9 protein was consistent with the schematic of the ABC exporter. Deletion of FgABCC9 resulted in decreased mycelial growth, increased sensitivity to SA and tebuconazole, reduced accumulation of deoxynivalenol (DON), and less pathogenicity towards wheat. Re-introduction of a functional FgABCC9 gene into ΔFgABCC9 recovered the phenotypes of the wild type strain. Transgenic expression of FgABCC9 in Arabidopsis thaliana increased the accumulation of SA in its leaves without activating SA signaling, which suggests that FgABCC9 functions as an SA exporter. Taken together, FgABCC9 encodes an ABC exporter, which is critical for fungal exportation of SA, response to tebuconazole, mycelial growth, and pathogenicity towards wheat.


Asunto(s)
Farmacorresistencia Fúngica/fisiología , Proteínas Fúngicas/metabolismo , Fusarium/crecimiento & desarrollo , Micelio/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Ácido Salicílico/metabolismo , Receptores de Sulfonilureas/metabolismo , Triticum/microbiología , Antifúngicos/farmacología , Arabidopsis/microbiología , Proteínas Fúngicas/genética , Fusarium/genética , Micelio/genética , Receptores de Sulfonilureas/genética
5.
Theor Appl Genet ; 130(6): 1321-1330, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28314934

RESUMEN

KEY MESSAGE: A novel Wx-B1 allele was characterized; a transposon insertion resulted in the loss of its function, which is different from the previously reported gene silencing mechanisms at the Wx-B1 locus. The waxy protein composition of 53 Chinese wheat landraces was analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and two-dimensional gel electrophoresis; of these, 10 did not show the expression of Wx-A1 (four accession) or Wx-B1 (six accessions) protein. The results of molecular marker detection revealed that the Wx-B1 allele (Wx-B1n) showed normal expression, inconsistent with the findings of SDS-PAGE for the Xiaobaipi accession. Further cloning of the 9160-bp region covering the Wx-B1 coding region and 3'-downstream region revealed that a 2178-bp transposon fragment had been inserted at 2462 bp within the tenth exon of Wx-B1n ORF, leading to the absence of Wx-B1 protein. Sequence analysis indicated that the insertion possessed the structural features of invert repeat and target repeat elements, we deduced that it was a transposon. Further PCR analysis revealed that this fragment had moved, but not copied itself, from 3B chromosome to the current location in Wx-B1n. Therefore, the reason for the inactivation of Wx-B1n was considerably different from those for the inactivation of Wx-B1b, Wx-B1k, and Wx-B1m; to our knowledge, this kind of structural mutation has never been reported in Wx-B1 alleles. This novel allele is interesting, because it was not associated with the deletion of other quality-related genes included in the 67 kb region lost with the common null allele Wx-B1b. The null Wx-B1n might be useful for investigating gene inactivation and expression as well as for enriching the genetic resource pool for the modification of the amylose/amylopectin ratio, thereby improving wheat quality.


Asunto(s)
Elementos Transponibles de ADN , Silenciador del Gen , Almidón Sintasa/genética , Triticum/genética , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Paseo de Cromosoma , Clonación Molecular , Genes de Plantas , Mutagénesis Insercional , Sistemas de Lectura Abierta , Proteínas de Plantas/genética , Triticum/enzimología
6.
Genome ; 60(3): 208-215, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28098486

RESUMEN

Gene loss during the formation of hexaploid bread wheat has been repeatedly reported. However, our knowledge on genome-wide analysis of the genes present on a single subgenome (SSG) in bread wheat is still limited. In this study, by analysing the 'Chinese Spring' chromosome arm shotgun sequences together with high-confidence gene models, we detected 433 genes on a SSG. Greater gene loss was observed in A and D subgenomes compared with B subgenome. More than 79% of the orthologs for these SSG genes were detected in diploid and tetraploid relatives of hexaploid wheat. Unexpectedly, no bias in expression breadth or in the distribution patterns of GO (gene ontology) terms for these genes was detected among the high-confidence genes. Further, network and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses indicated that most of these genes were not functionally related to each other. Interestingly, 30.7% of these SSG genes were most highly expressed in root, showing biased distribution given the distribution of the whole high-confidence genes. Collectively, these results facilitate our understanding of the loss of the genes that were retained in a SSG during the formation of hexaploid wheat.


Asunto(s)
Cromosomas de las Plantas/genética , Genoma de Planta , Raíces de Plantas/genética , Triticum/genética , Algoritmos , China , Diploidia , Evolución Molecular , Genes de Plantas , Genotipo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Tallos de la Planta/metabolismo , Poliploidía , Análisis de Secuencia de ARN , Tetraploidía , Transcriptoma
7.
Genome ; 60(12): 1068-1075, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28841403

RESUMEN

As a primitive hexaploid wheat resource distributed only in Tibet, Tibetan semi-wild wheat (Triticum aestivum subsp. tibetanum Shao) possesses unique characteristics that could be exploited in wheat breeding programs. Its good root system could offer a stable platform for above-ground components. To detect possible excellent locus for root traits from Tibetan semi-wild wheat, we identified QTLs for root traits using a recombinant inbred line population derived from a cross between Tibetan semi-wild wheat Q1028 and Zhengmai 9023. A total of 15 QTLs on eight chromosomes were detected, including four major QTLs, QMrl.sau-7B, QTrl.sau-4B, QAd.sau-7A, and QSa.sau-4B. The phenotypic variation explained by each of these QTLs ranges from 5.67% to 16.68%. Positive alleles of six QTLs were derived from Q1028. Several novel QTLs for root traits were identified. In addition, significant correlations were detected amongst root traits and agronomic traits. Taken together, these results suggest that Tibetan semi-wild wheat and the newly identified novel QTLs could be useful in future breeding programs.


Asunto(s)
Sitios de Carácter Cuantitativo , Triticum/genética , Endogamia , Fitomejoramiento , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Carácter Cuantitativo Heredable , Plantones/genética , Plantones/crecimiento & desarrollo , Triticum/crecimiento & desarrollo
8.
Plasmid ; 87-88: 58-64, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27615011

RESUMEN

In this study, we designed and constructed a super twin T-DNA vector (pTRIDT313-g) containing two independent T-DNA cassettes-one for the selection gene Hyg and the other for the target gene Gus-to produce marker-free transgenic lines. The resulting vector was transformed into tobacco, and polymerase chain reaction (PCR) analysis showed four types of gene combinations in the T1 and T2 generations: Gus only, Hyg only, Gus+Hyg, and untransformed lines. The intermediate region from the T-DNA of the right border of Hyg to the left border of Gus in the Hyg and Gus lines was not amplified. Genome walking confirmed that the Hyg and Gus T-DNA cassettes were independently inserted in different regions of the tobacco genome. Thus, the two T-DNA cassettes were integrated randomly as independent loci into the tobacco genome. The results of reverse transcription-PCR indicated that Hyg could normally be expressed in the roots, stems, and leaves of transgenic lines, and the resistance test showed that all Hyg transgenic lines could grow in the presence of 50mg/L hygromycin. All Gus transgenic lines showed obvious blue coloration in enzyme activity tests, indicating that the Gus gene could be normally expressed in all the lines. Therefore, the super twin T-DNA vector (pTRIDT313-g) exhibits independent integration, heredity, and normal gene function from two T-DNA cassettes. This vector could be a useful and valuable tool in the production of marker-free transgenic lines.


Asunto(s)
Agrobacterium/fisiología , ADN Bacteriano , Expresión Génica , Vectores Genéticos/genética , Transformación Genética , Paseo de Cromosoma , Orden Génico , Ligamiento Genético , Sitios Genéticos , Mutagénesis Insercional , Fenotipo , Plantas Modificadas Genéticamente , Nicotiana/genética , Nicotiana/microbiología
9.
Genetica ; 144(3): 313-23, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27154345

RESUMEN

Phosphoglucan phosphatases (Like-SEX4 1 and 2; LSF1 and LSF2) were reported to play roles in starch metabolism in leaves of Arabidopsis. In this study, we identified and mapped the LSF1 and LSF2 genes in barley (HvLSF1 and HvLSF2), characterized their gene and protein structures, predicted the cis-elements of their promoters, and analysed their expression patterns. HvLSF1 and HvLSF2 were mapped on the long arm of chromosome 1H (1HL) and 5H (5HL), respectively. Our results revealed varied exon-intron structures and conserved exon-intron junctions in both LSF1 and LSF2 from a range of analysed species. Alignment of protein sequences indicated that cTP and CT domains are much less varied than the functional domains (PDZ, DPS and CBM48). LSF2 was mainly expressed in anthers of barley and rice, and in leaf of Arabidopsis. LSF1 was mainly expressed in endosperm of barley and leaf of Arabidopsis and rice. The expression of LSF1 exhibited a diurnal pattern in rice only and that of LSF2 in both rice and Arabidopsis. Of the investigated stresses, only cold stress significantly reduced expression level of LSF1 and LSF2 in barley and LSF2 in Arabidopsis at late stages of the treatments. While heat treatment significantly decreased expression levels of LSF1 at middle stage (4 h) of a treatment in Arabidopsis only. The strong relationships detected between LSF2 and starch excess4 (SEX4), glucan, water dikinases or phosphoglucan, water dikinases were identified and discussed. Taken together, these results provide information of genetic manipulation of LSF1 and LSF2, especially in monocotyledon and further elucidate their regulatory mechanism in plant development.


Asunto(s)
Fosfatasas de Especificidad Dual/genética , Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Proteínas de Plantas/genética , Mapeo Cromosómico , Fosfatasas de Especificidad Dual/química , Perfilación de la Expresión Génica , Orden Génico , Hordeum/clasificación , Motivos de Nucleótidos , Especificidad de Órganos/genética , Filogenia , Proteínas de Plantas/química , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Estrés Fisiológico/genética
10.
Genome ; 59(7): 501-7, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27299732

RESUMEN

ADP-glucose pyrophosphorylase (AGP), which consists of two large subunits (AGP-L) and two small subunits (AGP-S), controls the rate-limiting step in the starch biosynthetic pathway. In this study, a full-length open reading frame (ORF) of AGP-L gene (named as Agp2) in wheat and a series of Agp2 gene sequences in wheat relatives were isolated. The coding region of Agp2 contained 15 exons and 14 introns including a full-length ORF of 1566 nucleotides, and the deduced protein contained 522 amino acids (57.8 kDa). Generally, the phylogenetic tree of Agp2 indicated that sequences from A- and D-genome donor species were most similar to each other and sequences from B-genome donor species contained more variation. Starch accumulation and Agp2 expression in wheat grains reached their peak at 21 and 15 days post anthesis (DPA), respectively.


Asunto(s)
Glucosa-1-Fosfato Adenililtransferasa/genética , Triticum/enzimología , Triticum/genética , Secuencia de Aminoácidos , Secuencia de Bases , ADN Complementario/química , ADN Complementario/genética , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Glucosa-1-Fosfato Adenililtransferasa/biosíntesis , Sistemas de Lectura Abierta , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Almidón/biosíntesis
11.
Genome ; 58(8): 385-90, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26356308

RESUMEN

Chromosome translocation is an important driving force in shaping genomes during evolution. Detailed knowledge of chromosome translocations in a given species and its close relatives should increase the efficiency and precision of chromosome engineering in crop improvement. To identify genes flanking the breakpoints of translocations and inversions as a step toward identifying breakpoints in bread wheat, we systematically analysed genes in the Brachypodium genome against wheat survey sequences and bin-mapped ESTs (expressed sequence tags) derived from the hexaploid wheat genotype 'Chinese Spring'. In addition to those well-known translocations between group 4, 5, and 7 chromosomes, this analysis identified genes flanking the three pericentric inversions on chromosomes 2B, 4B, and 5A. However, numerous chromosomal rearrangements reported in early studies could not be confirmed. The genes flanking the breakpoints reported in this study are valuable for isolating these breakpoints.


Asunto(s)
Puntos de Rotura del Cromosoma , Inversión Cromosómica , Cromosomas de las Plantas , Genes de Plantas , Triticum/genética , Brachypodium/genética , Mapeo Cromosómico , Evolución Molecular , Etiquetas de Secuencia Expresada , Genoma de Planta , Genotipo , Translocación Genética
12.
Planta ; 238(6): 1081-93, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24002549

RESUMEN

The function of starch phosphorylase has long been debated on the regulation of starch metabolism during the growth and development of plants. In this study, we isolated starch phosphorylase genes (Pho1 and Pho2) from barley, characterized their gene and protein structures, predicated their promoter's cis-elements and analyzed expression patterns. Multiple alignments of these genes showed that (1) both Pho1 and Pho2 genes possess 15 exons and 14 introns in all but three of the species analyzed, Aegilops tauschii (for Pho1 which contains 16 exons and 15 introns), potato (for Pho1b which contains 14 exons and 13 introns), and Triticum uraru (for Pho2 which contains 15 exons and 14 introns); (2) the exon-intron junctions of Pho1 and Pho2 flanking the ligand-binding sites are more conservative than the other regions. Analysis of protein sequences revealed that Pho1 and Pho2 were highly homologous except for two regions, the N terminal domain and the L78 insertion region. The results of real-time quantitative PCR (RT-qPCR) indicated that Pho2 is mainly expressed in germinating seeds, and the expression of Pho1 is similar to that of starch synthesis genes during seed development in barley. Microarray-based analysis indicated that the accumulation of Pho1 or Pho2 transcripts exhibited uniform pattern both in various tissues and various stages of seed development among species of barley, rice, and Arabidopsis. Pho1 of barley was significantly down-regulated under cold and drought treatments, and up-regulated under stem rust infection. Pho2 exhibited similar expression to Pho1 in barley. However, significant difference in expression was not detected for either Pho1 or Pho2 under any of the investigated abiotic stresses. In Arabidopsis, significant down-regulation was detected for Pho1 (PHS1) under abscisic acid (ABA) and for Pho2 (PHS2) under cold, salt, and ABA. Our results provide valuable information to genetically manipulate phosphorylase genes and to further elucidate their regulatory mechanism in the starch biosynthetic pathway.


Asunto(s)
Genes de Plantas , Hordeum/enzimología , Hordeum/genética , Proteínas de Plantas/genética , Almidón Fosforilasa/genética , Brachypodium/enzimología , Brachypodium/genética , Expresión Génica , Filogenia , Proteínas de Plantas/química , Poaceae/enzimología , Poaceae/genética , Regiones Promotoras Genéticas , Almidón Fosforilasa/química , Triticum/enzimología , Triticum/genética
13.
Genetica ; 141(7-9): 303-10, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23892918

RESUMEN

Many of the unique properties of wheat flour are derived from seed storage proteins such as the α-gliadins. In this study these α-gliadin genes from diploid Triticeae species were systemically characterized, and divided into 3 classes according to the distinct organization of their protein domains. Our analyses indicated that these α-gliadins varied in the number of cysteine residues they contained. Most of the α-gliadin genes were grouped according to their genomic origins within the phylogenetic tree. As expected, sequence alignments suggested that the repetitive domain and the two polyglutamine regions were responsible for length variations of α-gliadins as were the insertion/deletion of structural domains within the three different classes (I, II, and III) of α-gliadins. A screening of celiac disease toxic epitopes indicated that the α-gliadins of the class II, derived from the Ns genome, contain no epitope, and that some other genomes contain much fewer epitopes than the A, S(B) and D genomes of wheat. Our results suggest that the observed genetic differences in α-gliadins of Triticeae might indicate their use as a fertile ground for the breeding of less CD-toxic wheat varieties.


Asunto(s)
Gliadina/genética , Proteínas de Plantas/genética , Polimorfismo Genético , Triticum/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Gliadina/química , Datos de Secuencia Molecular , Mutagénesis Insercional , Filogenia , Proteínas de Plantas/química , Estructura Terciaria de Proteína , Eliminación de Secuencia
14.
Genetica ; 141(4-6): 227-38, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23690246

RESUMEN

Granule Bound Starch Synthase I (GBSS I) encoded by the waxy gene plays an important role in accumulating amylose during the development of starch granules in barley. In this study, we isolated and characterized waxy alleles of three waxy (GSHO 908, GSHO 1828 and NA 40) and two non-waxy barley accessions (PI 483237 and CIho 15773), estimated the expression patterns of waxy genes via Real-time quantitative PCR (RT-qPCR), investigated promoter activity by analyzing promoter-GUS expression, and examined possible effects of waxy alleles on starch granule morphology in barley accessions by scanning electron microscopy (SEM). A 193-bp insertion in intron 1, a 15-bp insertion in the coding region, and some single nucleotide polymorphic sites were detected in the waxy barley accessions. In addition, a 397-bp deletion containing the TATA box, transcription starting point, exon 1 and partial intron 1 were also identified in the waxy barley accessions. RT-qPCR analysis showed that waxy accessions had lower waxy expression levels than those of non-waxy accessions. Transient expression assays showed that GUS activity driven by the 1,029-bp promoter of the non-waxy accessions was stronger than that driven by the 822-bp promoter of the waxy accessions. SEM revealed no apparent differences of starch granule morphology between waxy and non-waxy accessions. Our results showed that the 397-bp deletion identified in the waxy barley accessions is likely responsible for the reduction of waxy transcript, leading to lower concentrations of GBSS I protein thus lower amylose content.


Asunto(s)
Alelos , Genes de Plantas , Hordeum/genética , Amilosa/química , Metabolismo de los Hidratos de Carbono/genética , Expresión Génica , Orden Génico , Hordeum/metabolismo , Motivos de Nucleótidos , Polimorfismo Genético , Regiones Promotoras Genéticas , Eliminación de Secuencia , Almidón/ultraestructura , Almidón Sintasa/química , Almidón Sintasa/genética , Ceras
15.
BMC Plant Biol ; 12: 73, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22646663

RESUMEN

BACKGROUND: High molecular weight glutenin subunits (HMW-GSs), encoded by the genes at Glu-1 loci in wheat and its related species, are significant in the determination of grain processing quality. However, the diversity and variations of HMW-GSs are relatively low in bread wheat. More interests are now focused on wheat wild relatives in Triticeae. The genus Aegilops represents an important germplasm for novel HWM-GSs and other useful genes for wheat genetic improvement. RESULTS: Six novel Glu-1 alleles and HMW-GSs were identified and characterized from three species of Aegilops section Sitopsis (S genome). Both open reading frames (ORFs) and promoter regions of these Glu-1 alleles were sequenced and characterized. The ORFs of Sitopsis Glu-1 genes are approximately 2.9 kb and 2.3 kb for x-type and y-type subunits, respectively. Although the primary structures of Sitopsis HMW-GSs are similar to those of previously reported ones, all six x-type or y-type subunits have the large fragment insertions. Our comparative analyses of the deduced amino acid sequences verified that Aegilops section Sitopsis species encode novel HMW-GSs with their molecular weights larger than almost all other known HMW-GSs. The Glu-1 promoter sequences share the high homology among S genome. Our phylogenetic analyses by both network and NJ tree indicated that there is a close phylogenetic evolutionary relationship of x-type and y-type subunit between S and D genome. CONCLUSIONS: The large molecular weight of HMW-GSs from S genome is a unique feature identified in this study. Such large subunits are resulted from the duplications of repetitive domains in Sitopsis HMW-GSs. The unequal crossover events are the most likely mechanism of variations in glutenin subunits. The S genome-encoded subunits, 1Dx2.2 and 1Dx2.2* have independent origins, although they share similar evolutionary mechanism. As HMW-GSs play a key role in wheat baking quality, these large Sitopsis glutenin subunits can be used as special genetic resources for wheat quality improvement.


Asunto(s)
Evolución Molecular , Genoma de Planta/genética , Glútenes/genética , Poaceae/genética , Triticum/genética , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Cruzamiento , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Glútenes/aislamiento & purificación , Glútenes/metabolismo , Datos de Secuencia Molecular , Peso Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Poaceae/metabolismo , Regiones Promotoras Genéticas/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Transgenes , Triticum/metabolismo
16.
Genetica ; 140(7-9): 325-35, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23054223

RESUMEN

In this study, we report the expression of HMW-GSs in 87 accessions of tetraploid wheat, the characterization of three inactive and one active HMW glutenin genes, and the functional verification of HMW-GSs by promoter-GUS expression. SDS-PAGE profiles revealed that tetraploid wheat has many different combinations of HMW-GSs and the number of subunits varies from 1 to 4. HMW glutenin genes at the Glu-A1x, Glu-A1y and Glu-B1y loci exhibited different frequencies of inaction while the Glu-B1x allele was expressed in all 87 accessions. Gene cloning showed that only 1Bx (Tdu-e) could express a full-length protein and its deduced protein sequence has the typical primary structure but with fewer cysteine residues. The expression of the other three HMW glutenin genes has been disrupted by stop codons in their repetitive domains. Besides short indels or mutations of one or more bases, an 85-bp deletion and a 185-bp insertion were found in the promoter regions of 1Ay (Tdu-s) and 1Bx (Tdu-e). The transient expression of promoter-GUS constructs indicated that the 1Ay promoter can drive expression of the GUS gene. We conclude that defects (stop codons or the insertion of large transposon-like elements) in the coding regions may be the most probable cause for the inaction of the HMW glutenin genes.


Asunto(s)
Genes de Plantas , Glútenes/genética , Tetraploidía , Triticum/genética , Clonación Molecular , ADN de Plantas/química , Electroforesis en Gel de Poliacrilamida , Peso Molecular , Filogenia
18.
Genetica ; 139(10): 1283-92, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22290495

RESUMEN

The pre-mRNA processing (Prp1) gene encodes a spliceosomal protein. It was firstly identified in fission yeast and plays a regular role during spliceosome activation and cell cycle. Plant Prp1 genes have only been identified from rice, Sorghum and Arabidopsis thaliana. In this study, we reported the identification and isolation of a novel Prp1 gene from barley, and further explored its expressional pattern by using real-time quantitative RTPCR, promoter prediction and analysis of microarray data. The putative barley Prp1 protein has a similar primary structure features to those of other known Prp1 protein in this family. The results of amino acid comparison indicated that Prp1 protein of barley and other plant species has a highly conserved 30 termnal region while their 50 sequences greatly varied. The results of expressional analysis revealed that the expression level of barley Prp1 gene is always stable in different vegetative tissues, except it is up-regulated at the mid- and late stages of seed development or under the condition of cold stress. This kind of expressional pattern for barley Prp1 is also supported by our results of comparison of microarray data from barley, rice and Arabidopsis. For the molecular mechanism of its expressional pattern, we conclude that the expression of Prp1 gene may be up-regulated by the increase of pre-mRNAs and not be constitutive or ubiquitous.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Hordeum/fisiología , Proteínas de Plantas/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Estrés Fisiológico/genética , Secuencia de Aminoácidos , Evolución Molecular , Hordeum/crecimiento & desarrollo , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/química , Regiones Promotoras Genéticas/genética , Análisis de Secuencia de ADN
19.
Theor Appl Genet ; 121(5): 985-1000, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20514475

RESUMEN

The development and application of molecular methods in oats has been relatively slow compared with other crops. Results from the previous analyses have left many questions concerning species evolutionary relationships unanswered, especially regarding the origins of the B and D genomes, which are only known to be present in polyploid oat species. To investigate the species and genome relationships in genus Avena, among 13 diploid (A and C genomes), we used the second intron of the nuclear gene FLORICAULA/LEAFY (FL int2) in seven tetraploid (AB and AC genomes), and five hexaploid (ACD genome) species. The Avena FL int2 is rather long, and high levels of variation in length and sequence composition were found. Evidence for more than one copy of the FL int2 sequence was obtained for both the A and C genome groups, and the degree of divergence of the A genome copies was greater than that observed within the C genome sequences. Phylogenetic analysis of the FL int2 sequences resulted in topologies that contained four major groups; these groups reemphasize the major genomic divergence between the A and C genomes, and the close relationship among the A, B, and D genomes. However, the D genome in hexaploids more likely originated from a C genome diploid rather than the generally believed A genome, and the C genome diploid A. clauda may have played an important role in the origination of both the C and D genome in polyploids.


Asunto(s)
Avena/genética , Genes de Plantas/genética , Intrones/genética , Filogenia , Secuencia de Bases , Secuencia de Consenso/genética , Datos de Secuencia Molecular
20.
Theor Appl Genet ; 121(5): 907-17, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20523963

RESUMEN

The universal stress proteins (USPs) play an important role in enhancing survival rate during prolonged exposure to heat shock, nutrient starvation, or stressors from agents that arrest cell growth or damage DNA structures. Searching the HarvEST database of barley resulted in 25 putative USP cDNA sequences. Of these, 16 could translate into intact proteins (putative USPs). The alignments of multiple amino acid sequences between the putative barley USPs with those of Arabidopsis and Methanococcus jannaschii resulted in a set of common residues involved in ATP-binding. The 16 putative USPs in barley and the 21 in Arabidopsis were clustered into seven groups, which were distinct from those of E. coli. The genes in these different groups have different intron/exon structures. Nine putative USP genes of barley were cloned successfully based on their sequence characteristics, and they contain two or three introns each. Two of these introns were present in all the genes, one located between beta2 and alpha2, and the other between beta 4 and alpha 4. Five sets of primers were successfully developed for these putative USP genes. Two of them were mapped on chromosome 1H and the other three were located on three different chromosomes, 2H, 3H and 6H, respectively. Expression analyses were carried out for nine of these putative USP genes. The expression for two of them was undetectable within 27 h following exposure to salt stress. Six of the other seven were expressed in both root and leaf, and the remaining one was expressed in root only. The majority of these genes was expressed more in the salt-sensitive variety, Morex, than in the more tolerant variety, Steptoe.


Asunto(s)
Genes de Plantas/genética , Proteínas de Choque Térmico/genética , Hordeum/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Mapeo Cromosómico , Secuencia Conservada/genética , Exones/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Intrones/genética , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Estructura Secundaria de Proteína , Alineación de Secuencia , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA