Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(19): 3613-3631.e7, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36108632

RESUMEN

Allele-specific expression of imprinted gene clusters is governed by gametic DNA methylation at master regulators called imprinting control regions (ICRs). Non-gametic or secondary differentially methylated regions (DMRs) at promoters and exonic regions reinforce monoallelic expression but do not control an entire cluster. Here, we unveil an unconventional secondary DMR that is indispensable for tissue-specific imprinting of two previously unlinked genes, Grb10 and Ddc. Using polymorphic mice, we mapped an intronic secondary DMR at Grb10 with paternal-specific CTCF binding (CBR2.3) that forms contacts with Ddc. Deletion of paternal CBR2.3 removed a critical insulator, resulting in substantial shifting of chromatin looping and ectopic enhancer-promoter contacts. Destabilized gene architecture precipitated abnormal Grb10-Ddc expression with developmental consequences in the heart and muscle. Thus, we redefine the Grb10-Ddc imprinting domain by uncovering an unconventional intronic secondary DMR that functions as an insulator to instruct the tissue-specific, monoallelic expression of multiple genes-a feature previously ICR exclusive.


Asunto(s)
Impresión Genómica , ARN Largo no Codificante , Alelos , Animales , Cromatina/genética , Metilación de ADN , Proteína Adaptadora GRB10/genética , Corazón , Ratones
2.
Genes Dev ; 36(11-12): 752-763, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35738678

RESUMEN

Self-renewal of spermatogonial stem cells is vital to lifelong production of male gametes and thus fertility. However, the underlying mechanisms remain enigmatic. Here, we show that DOT1L, the sole H3K79 methyltransferase, is required for spermatogonial stem cell self-renewal. Mice lacking DOT1L fail to maintain spermatogonial stem cells, characterized by a sequential loss of germ cells from spermatogonia to spermatids and ultimately a Sertoli cell only syndrome. Inhibition of DOT1L reduces the stem cell activity after transplantation. DOT1L promotes expression of the fate-determining HoxC transcription factors in spermatogonial stem cells. Furthermore, H3K79me2 accumulates at HoxC9 and HoxC10 genes. Our findings identify an essential function for DOT1L in adult stem cells and provide an epigenetic paradigm for regulation of spermatogonial stem cells.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Espermatogonias , Células Madre , Animales , Diferenciación Celular , Masculino , Ratones , Espermatogonias/citología , Espermatogonias/metabolismo , Células Madre/citología , Células Madre/metabolismo
3.
Nature ; 620(7972): 209-217, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37438531

RESUMEN

The human genome functions as a three-dimensional chromatin polymer, driven by a complex collection of chromosome interactions1-3. Although the molecular rules governing these interactions are being quickly elucidated, relatively few proteins regulating this process have been identified. Here, to address this gap, we developed high-throughput DNA or RNA labelling with optimized Oligopaints (HiDRO)-an automated imaging pipeline that enables the quantitative measurement of chromatin interactions in single cells across thousands of samples. By screening the human druggable genome, we identified more than 300 factors that influence genome folding during interphase. Among these, 43 genes were validated as either increasing or decreasing interactions between topologically associating domains. Our findings show that genetic or chemical inhibition of the ubiquitous kinase GSK3A leads to increased long-range chromatin looping interactions in a genome-wide and cohesin-dependent manner. These results demonstrate the importance of GSK3A signalling in nuclear architecture and the use of HiDRO for identifying mechanisms of spatial genome organization.


Asunto(s)
Cromatina , Posicionamiento de Cromosoma , Cromosomas Humanos , Genoma Humano , Glucógeno Sintasa Quinasas , Ensayos Analíticos de Alto Rendimiento , Análisis de la Célula Individual , Humanos , Cromatina/efectos de los fármacos , Cromatina/genética , Cromatina/metabolismo , Posicionamiento de Cromosoma/efectos de los fármacos , Cromosomas Humanos/efectos de los fármacos , Cromosomas Humanos/genética , Cromosomas Humanos/metabolismo , ADN/análisis , ADN/metabolismo , Genoma Humano/efectos de los fármacos , Genoma Humano/genética , Glucógeno Sintasa Quinasas/antagonistas & inhibidores , Glucógeno Sintasa Quinasas/deficiencia , Glucógeno Sintasa Quinasas/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Interfase , Reproducibilidad de los Resultados , ARN/análisis , ARN/metabolismo , Transducción de Señal/efectos de los fármacos , Análisis de la Célula Individual/métodos , Cohesinas
4.
Mol Cell ; 81(4): 859-869.e8, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352108

RESUMEN

Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming. Here, we describe the first application of biochemically engineered TET mutants that unlink 5mC oxidation steps, examining their effects on somatic cell reprogramming. We show that only TET enzymes proficient for oxidation to 5fC/5caC can rescue the reprogramming potential of Tet2-deficient mouse embryonic fibroblasts. This effect correlated with rapid DNA demethylation at reprogramming enhancers and increased chromatin accessibility later in reprogramming. These experiments demonstrate that DNA demethylation through 5fC/5caC has roles distinct from 5hmC in somatic reprogramming to pluripotency.


Asunto(s)
5-Metilcitosina/metabolismo , Reprogramación Celular , Proteínas de Unión al ADN/metabolismo , Embrión de Mamíferos/metabolismo , Elementos de Facilitación Genéticos , Epigénesis Genética , Fibroblastos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Proteínas de Unión al ADN/genética , Dioxigenasas , Embrión de Mamíferos/citología , Fibroblastos/citología , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Mutación , Células 3T3 NIH , Proteínas Proto-Oncogénicas/genética
5.
Mol Cell ; 81(2): 239-254.e8, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33301730

RESUMEN

Metazoan transcription factors typically regulate large numbers of genes. Here we identify via a CRISPR-Cas9 genetic screen ZNF410, a pentadactyl DNA-binding protein that in human erythroid cells directly activates only a single gene, the NuRD component CHD4. Specificity is conveyed by two highly evolutionarily conserved clusters of ZNF410 binding sites near the CHD4 gene with no counterparts elsewhere in the genome. Loss of ZNF410 in adult-type human erythroid cell culture systems and xenotransplantation settings diminishes CHD4 levels and derepresses the fetal hemoglobin genes. While previously known to be silenced by CHD4, the fetal globin genes are exposed here as among the most sensitive to reduced CHD4 levels.. In vitro DNA binding assays and crystallographic studies reveal the ZNF410-DNA binding mode. ZNF410 is a remarkably selective transcriptional activator in erythroid cells, and its perturbation might offer new opportunities for treatment of hemoglobinopathies.


Asunto(s)
ADN/genética , Células Precursoras Eritroides/metabolismo , Hemoglobina Fetal/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Factores de Transcripción/genética , Animales , Sitios de Unión , Células COS , Sistemas CRISPR-Cas , Chlorocebus aethiops , ADN/metabolismo , Células Precursoras Eritroides/citología , Células Precursoras Eritroides/trasplante , Sangre Fetal/citología , Sangre Fetal/metabolismo , Hemoglobina Fetal/metabolismo , Feto , Edición Génica , Células HEK293 , Xenoinjertos , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/química , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Ratones , Modelos Moleculares , Células Madre Embrionarias de Ratones/citología , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Activación Transcripcional
6.
Nature ; 610(7931): 381-388, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198800

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the devastating global pandemic of coronavirus disease 2019 (COVID-19), in part because of its ability to effectively suppress host cell responses1-3. In rare cases, viral proteins dampen antiviral responses by mimicking critical regions of human histone proteins4-8, particularly those containing post-translational modifications required for transcriptional regulation9-11. Recent work has demonstrated that SARS-CoV-2 markedly disrupts host cell epigenetic regulation12-14. However, how SARS-CoV-2 controls the host cell epigenome and whether it uses histone mimicry to do so remain unclear. Here we show that the SARS-CoV-2 protein encoded by ORF8 (ORF8) functions as a histone mimic of the ARKS motifs in histone H3 to disrupt host cell epigenetic regulation. ORF8 is associated with chromatin, disrupts regulation of critical histone post-translational modifications and promotes chromatin compaction. Deletion of either the ORF8 gene or the histone mimic site attenuates the ability of SARS-CoV-2 to disrupt host cell chromatin, affects the transcriptional response to infection and attenuates viral genome copy number. These findings demonstrate a new function of ORF8 and a mechanism through which SARS-CoV-2 disrupts host cell epigenetic regulation. Further, this work provides a molecular basis for the finding that SARS-CoV-2 lacking ORF8 is associated with decreased severity of COVID-19.


Asunto(s)
COVID-19 , Epigénesis Genética , Histonas , Interacciones Microbiota-Huesped , Imitación Molecular , SARS-CoV-2 , Proteínas Virales , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Epigenoma/genética , Histonas/química , Histonas/metabolismo , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
7.
Nature ; 605(7908): 160-165, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35477756

RESUMEN

Colorectal cancer (CRC) is among the most frequent forms of cancer, and new strategies for its prevention and therapy are urgently needed1. Here we identify a metabolite signalling pathway that provides actionable insights towards this goal. We perform a dietary screen in autochthonous animal models of CRC and find that ketogenic diets exhibit a strong tumour-inhibitory effect. These properties of ketogenic diets are recapitulated by the ketone body ß-hydroxybutyrate (BHB), which reduces the proliferation of colonic crypt cells and potently suppresses intestinal tumour growth. We find that BHB acts through the surface receptor Hcar2 and induces the transcriptional regulator Hopx, thereby altering gene expression and inhibiting cell proliferation. Cancer organoid assays and single-cell RNA sequencing of biopsies from patients with CRC provide evidence that elevated BHB levels and active HOPX are associated with reduced intestinal epithelial proliferation in humans. This study thus identifies a BHB-triggered pathway regulating intestinal tumorigenesis and indicates that oral or systemic interventions with a single metabolite may complement current prevention and treatment strategies for CRC.


Asunto(s)
Neoplasias Colorrectales , Transducción de Señal , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacología , Animales , Proliferación Celular , Transformación Celular Neoplásica , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/prevención & control , Humanos
8.
Mol Cell ; 77(1): 67-81.e7, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31784359

RESUMEN

Interactions between the genome and the nuclear pore complex (NPC) have been implicated in multiple gene regulatory processes, but the underlying logic of these interactions remains poorly defined. Here, we report high-resolution chromatin binding maps of two core components of the NPC, Nup107 and Nup93, in Drosophila cells. Our investigation uncovered differential binding of these NPC subunits, where Nup107 preferentially targets active genes while Nup93 associates primarily with Polycomb-silenced regions. Comparison to Lamin-associated domains (LADs) revealed that NPC binding sites can be found within LADs, demonstrating a linear binding of the genome along the nuclear envelope. Importantly, we identified a functional role of Nup93 in silencing of Polycomb target genes and in spatial folding of Polycomb domains. Our findings lend to a model where different nuclear pores bind different types of chromatin via interactions with specific NPC sub-complexes, and a subset of Polycomb domains is stabilized by interactions with Nup93.


Asunto(s)
Cromatina/metabolismo , Poro Nuclear/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Animales , Acuaporinas/metabolismo , Sitios de Unión/fisiología , Línea Celular , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Regulación de la Expresión Génica/fisiología , Genoma/fisiología , Masculino , Membrana Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo
9.
Genes Dev ; 34(11-12): 745-750, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381626

RESUMEN

DNA methylation is a major silencing mechanism of transposable elements (TEs). Here we report that TEX15, a testis-specific protein, is required for TE silencing. TEX15 is expressed in embryonic germ cells and functions during genome-wide epigenetic reprogramming. The Tex15 mutant exhibits DNA hypomethylation in TEs at a level similar to Mili and Dnmt3c but not Miwi2 mutants. TEX15 is associated with MILI in testis. As loss of Tex15 causes TE desilencing with intact piRNA production, our results identify TEX15 as a new essential epigenetic regulator that may function as a nuclear effector of MILI to silence TEs by DNA methylation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Elementos Transponibles de ADN/genética , Silenciador del Gen/fisiología , Células Germinativas/metabolismo , Animales , Metilación de ADN , Células Germinales Embrionarias/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Ratones , Mutación
10.
Genes Dev ; 34(15-16): 1039-1050, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32561546

RESUMEN

The FoxA transcription factors are critical for liver development through their pioneering activity, which initiates a highly complex regulatory network thought to become progressively resistant to the loss of any individual hepatic transcription factor via mutual redundancy. To investigate the dispensability of FoxA factors for maintaining this regulatory network, we ablated all FoxA genes in the adult mouse liver. Remarkably, loss of FoxA caused rapid and massive reduction in the expression of critical liver genes. Activity of these genes was reduced back to the low levels of the fetal prehepatic endoderm stage, leading to necrosis and lethality within days. Mechanistically, we found FoxA proteins to be required for maintaining enhancer activity, chromatin accessibility, nucleosome positioning, and binding of HNF4α. Thus, the FoxA factors act continuously, guarding hepatic enhancer activity throughout adult life.


Asunto(s)
Factores de Transcripción Forkhead/fisiología , Redes Reguladoras de Genes , Hígado/metabolismo , Animales , Sitios de Unión , Cromatina/metabolismo , Elementos de Facilitación Genéticos , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-gamma del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Hígado/patología , Fallo Hepático/etiología , Fallo Hepático/patología , Masculino , Ratones , Nucleosomas
11.
Mol Cell ; 73(4): 684-698.e8, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30773298

RESUMEN

Accumulation of senescent cells during aging contributes to chronic inflammation and age-related diseases. While senescence is associated with profound alterations of the epigenome, a systematic view of epigenetic factors in regulating senescence is lacking. Here, we curated a library of short hairpin RNAs for targeted silencing of all known epigenetic proteins and performed a high-throughput screen to identify key candidates whose downregulation can delay replicative senescence of primary human cells. This screen identified multiple new players including the histone acetyltransferase p300 that was found to be a primary driver of the senescent phenotype. p300, but not the paralogous CBP, induces a dynamic hyper-acetylated chromatin state and promotes the formation of active enhancer elements in the non-coding genome, leading to a senescence-specific gene expression program. Our work illustrates a causal role of histone acetyltransferases and acetylation in senescence and suggests p300 as a potential therapeutic target for senescence and age-related diseases.


Asunto(s)
Proliferación Celular , Senescencia Celular , Ensamble y Desensamble de Cromatina , Cromatina/enzimología , Fibroblastos/enzimología , Histonas/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Proliferación Celular/genética , Senescencia Celular/genética , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Represión Epigenética , Células HEK293 , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Histonas/genética , Humanos , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Factores de Tiempo , Transcripción Genética , Factores de Transcripción p300-CBP/genética
12.
Genes Dev ; 32(2): 181-193, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29440247

RESUMEN

Epithelial tissues rely on a highly coordinated balance between self-renewal, proliferation, and differentiation, disruption of which may drive carcinogenesis. The epigenetic regulator KMT2D (MLL4) is one of the most frequently mutated genes in all cancers, particularly epithelial cancers, yet its normal function in these tissues is unknown. Here, we identify a novel role for KMT2D in coordinating this fine balance, as depletion of KMT2D from undifferentiated epidermal keratinocytes results in reduced proliferation, premature spurious activation of terminal differentiation genes, and disorganized epidermal stratification. Genome-wide, KMT2D interacts with p63 and is enriched at its target enhancers. Depletion of KMT2D results in a broad loss of enhancer histone modifications H3 Lys 4 (H3K4) monomethylation (H3K4me1) and H3K27 acetylation (H3K27ac) as well as reduced expression of p63 target genes, including key genes involved in epithelial development and adhesion. Together, these results reveal a critical role for KMT2D in the control of epithelial enhancers and p63 target gene expression, including the requirement of KMT2D for the maintenance of epithelial progenitor gene expression and the coordination of proper terminal differentiation.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Elementos de Facilitación Genéticos , Queratinocitos/metabolismo , Proteínas de Neoplasias/fisiología , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proliferación Celular , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Código de Histonas , Homeostasis , Humanos , Proteínas de Neoplasias/metabolismo
13.
Nature ; 576(7785): 158-162, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31776509

RESUMEN

Features of higher-order chromatin organization-such as A/B compartments, topologically associating domains and chromatin loops-are temporarily disrupted during mitosis1,2. Because these structures are thought to influence gene regulation, it is important to understand how they are re-established after mitosis. Here we examine the dynamics of chromosome reorganization by Hi-C after mitosis in highly purified, synchronous mouse erythroid cell populations. We observed rapid establishment of A/B compartments, followed by their gradual intensification and expansion. Contact domains form from the 'bottom up'-smaller subTADs are formed initially, followed by convergence into multi-domain TAD structures. CTCF is partially retained on mitotic chromosomes and immediately resumes full binding in ana/telophase. By contrast, cohesin is completely evicted from mitotic chromosomes and regains focal binding at a slower rate. The formation of CTCF/cohesin co-anchored structural loops follows the kinetics of cohesin positioning. Stripe-shaped contact patterns-anchored by CTCF-grow in length, which is consistent with a loop-extrusion process after mitosis. Interactions between cis-regulatory elements can form rapidly, with rates exceeding those of CTCF/cohesin-anchored contacts. Notably, we identified a group of rapidly emerging transient contacts between cis-regulatory elements in ana/telophase that are dissolved upon G1 entry, co-incident with the establishment of inner boundaries or nearby interfering chromatin loops. We also describe the relationship between transcription reactivation and architectural features. Our findings indicate that distinct but mutually influential forces drive post-mitotic chromatin reconfiguration.


Asunto(s)
Cromatina , Fase G1 , Mitosis , Animales , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Ratones , Cohesinas
14.
Mol Cell ; 66(1): 63-76.e6, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28366641

RESUMEN

Nuclear pore complex components (Nups) have been implicated in transcriptional regulation, yet what regulatory steps are controlled by metazoan Nups remains unclear. We identified the presence of multiple Nups at promoters, enhancers, and insulators in the Drosophila genome. In line with this binding, we uncovered a functional role for Nup98 in mediating enhancer-promoter looping at ecdysone-inducible genes. These genes were found to be stably associated with nuclear pores before and after activation. Although changing levels of Nup98 disrupted enhancer-promoter contacts, it did not affect ongoing transcription but instead compromised subsequent transcriptional activation or transcriptional memory. In support of the enhancer-looping role, we found Nup98 to gain and retain physical interactions with architectural proteins upon stimulation with ecdysone. Together, our data identify Nups as a class of architectural proteins for enhancers and supports a model in which animal genomes use the nuclear pore as an organizing scaffold for inducible poised genes.


Asunto(s)
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Transcripción Genética , Activación Transcripcional , Animales , Animales Modificados Genéticamente , Sitios de Unión , Línea Celular , Cromatina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Ecdisona/farmacología , Genotipo , Elementos Aisladores , Mutación , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Fenotipo , Unión Proteica , Interferencia de ARN , Transcripción Genética/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Transfección
15.
PLoS Genet ; 18(11): e1010528, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36449519

RESUMEN

The relationship between cohesin-mediated chromatin looping and gene expression remains unclear. NIPBL and WAPL are two opposing regulators of cohesin activity; depletion of either is associated with changes in both chromatin folding and transcription across a wide range of cell types. However, a direct comparison of their individual and combined effects on gene expression in the same cell type is lacking. We find that NIPBL or WAPL depletion in human HCT116 cells each alter the expression of ~2,000 genes, with only ~30% of the genes shared between the conditions. We find that clusters of differentially expressed genes within the same topologically associated domain (TAD) show coordinated misexpression, suggesting some genomic domains are especially sensitive to both more or less cohesin. Finally, co-depletion of NIPBL and WAPL restores the majority of gene misexpression as compared to either knockdown alone. A similar set of NIPBL-sensitive genes are rescued following CTCF co-depletion. Together, this indicates that altered transcription due to reduced cohesin activity can be functionally offset by removal of either its negative regulator (WAPL) or the physical barriers (CTCF) that restrict loop-extrusion events.


Asunto(s)
Proteínas de Ciclo Celular , Cromatina , Proteínas Cromosómicas no Histona , Regulación de la Expresión Génica , Humanos , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Genes cdc , Genoma , Células HCT116 , Cohesinas
16.
Hum Mol Genet ; 31(22): 3855-3872, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-35717573

RESUMEN

In vitro fertilization (IVF) is associated with DNA methylation abnormalities and a higher incidence of adverse pregnancy outcomes. However, which exposure(s), among the many IVF interventions, contributes to these outcomes remains unknown. Frozen embryo transfer (ET) is increasingly utilized as an alternative to fresh ET, but reports suggest a higher incidence of pre-eclampsia and large for gestational age infants. This study examines DNA methylation in human placentas using the 850K Infinium MethylationEPIC BeadChip array obtained after 65 programmed frozen ET cycles, 82 fresh ET cycles and 45 unassisted conceptions. Nine patients provided placentas following frozen and fresh ET from consecutive pregnancies for a paired subgroup analysis. In parallel, eight mouse placentas from fresh and frozen ET were analyzed using the Infinium Mouse Methylation BeadChip array. Human and mouse placentas were significantly hypermethylated after frozen ET compared with fresh. Paired analysis showed similar trends. Sex-specific analysis revealed that these changes were driven by male placentas in humans and mice. Frozen and fresh ET placentas were significantly different from controls, with frozen samples hypermethylated compared with controls driven by males and fresh samples being hypomethylated compared with controls, driven by females. Sexually dimorphic epigenetic changes could indicate differential susceptibility to IVF-associated perturbations, which highlights the importance of sex-specific evaluation of adverse outcomes. Similarities between changes in mice and humans underscore the suitability of the mouse model in evaluating how IVF impacts the epigenetic landscape, which is valuable given limited access to human tissue and the ability to isolate specific interventions in mice.


Asunto(s)
Metilación de ADN , Transferencia de Embrión , Embarazo , Femenino , Humanos , Masculino , Ratones , Animales , Metilación de ADN/genética , Transferencia de Embrión/efectos adversos , Criopreservación , Fertilización In Vitro/efectos adversos , Placenta , Estudios Retrospectivos
17.
Hum Reprod ; 39(1): 154-176, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37994669

RESUMEN

STUDY QUESTION: Does trophectoderm biopsy (TEBx) of blastocysts for preimplantation genetic testing in the clinic affect normal placental and embryo development and offspring metabolic outcomes in a mouse model? SUMMARY ANSWER: TEBx impacts placental and embryonic health during early development, with some alterations resolving and others worsening later in development and triggering metabolic changes in adult offspring. WHAT IS KNOWN ALREADY: Previous studies have not assessed the epigenetic and morphological impacts of TEBx either in human populations or in animal models. STUDY DESIGN, SIZE, DURATION: We employed a mouse model to identify the effects of TEBx during IVF. Three groups were assessed: naturally conceived (Naturals), IVF, and IVF + TEBx, at two developmental timepoints: embryonic day (E)12.5 (n = 40/Naturals, n = 36/IVF, and n = 36/IVF + TEBx) and E18.5 (n = 42/Naturals, n = 30/IVF, and n = 35/IVF + TEBx). Additionally, to mimic clinical practice, we assessed a fourth group: IVF + TEBx + Vitrification (Vit) at E12.5 (n = 29) that combines TEBx and vitrification. To assess the effect of TEBx in offspring health, we characterized a 12-week-old cohort (n = 24/Naturals, n = 25/IVF and n = 25/IVF + TEBx). PARTICIPANTS/MATERIALS, SETTING, METHODS: Our mouse model used CF-1 females as egg donors and SJL/B6 males as sperm donors. IVF, TEBx, and vitrification were performed using standardized methods. Placenta morphology was evaluated by hematoxylin-eosin staining, in situ hybridization using Tpbpa as a junctional zone marker and immunohistochemistry using CD34 fetal endothelial cell markers. For molecular analysis of placentas and embryos, DNA methylation was analyzed using pyrosequencing, luminometric methylation assay, and chip array technology. Expression patterns were ascertained by RNA sequencing. Triglycerides, total cholesterol, high-, low-, and very low-density lipoprotein, insulin, and glucose were determined in the 12-week-old cohort using commercially available kits. MAIN RESULTS AND THE ROLE OF CHANCE: We observed that at E12.5, IVF + TEBx had a worse outcome in terms of changes in DNA methylation and differential gene expression in placentas and whole embryos compared with IVF alone and compared with Naturals. These changes were reflected in alterations in placental morphology and blood vessel density. At E18.5, early molecular changes in fetuses were maintained or exacerbated. With respect to placentas, the molecular and morphological changes, although different compared to Naturals, were equivalent to the IVF group, except for changes in blood vessel density, which persisted. Of note is that most differences were sex specific. We conclude that TEBx has more detrimental effects in mid-gestation placental and embryonic tissues, with alterations in embryonic tissues persisting or worsening in later developmental stages compared to IVF alone, and the addition of vitrification after TEBx results in more pronounced and potentially detrimental epigenetic effects: these changes are significantly different compared to Naturals. Finally, we observed that 12-week IVF + TEBx offspring, regardless of sex, showed higher glucose, insulin, triglycerides, lower total cholesterol, and lower high-density lipoprotein compared to IVF and Naturals, with only males having higher body weight compared to IVF and Naturals. Our findings in a mouse model additionally support the need for more studies to assess the impact of new procedures in ART to ensure healthy pregnancies and offspring outcomes. LARGE SCALE DATA: Data reported in this work have been deposited in the NCBI Gene Expression Omnibus under accession number GSE225318. LIMITATIONS, REASONS FOR CAUTION: This study was performed using a mouse model that mimics many clinical IVF procedures and outcomes observed in humans, where studies on early embryos are not possible. WIDER IMPLICATIONS OF THE FINDINGS: This study highlights the importance of assaying new procedures used in ART to assess their impact on placenta and embryo development, and offspring metabolic outcomes. STUDY FUNDING/COMPETING INTEREST(S): This work was funded by a National Centers for Translational Research in Reproduction and Infertility grant P50 HD068157-06A1 (M.S.B., C.C., M.M.), Ruth L. Kirschstein National Service Award Individual Postdoctoral Fellowship F32 HD107914 (E.A.R.-C.) and F32 HD089623 (L.A.V.), and National Institutes of Health Training program in Cell and Molecular Biology T32 GM007229 (C.N.H.). No conflict of interest.


Asunto(s)
Insulinas , Placenta , Adulto , Animales , Embarazo , Humanos , Masculino , Femenino , Placenta/metabolismo , Semen/metabolismo , Blastocisto/metabolismo , Fertilización In Vitro , Epigénesis Genética , Biopsia , Glucosa , Triglicéridos , Colesterol , Insulinas/metabolismo
20.
Nat Chem Biol ; 17(12): 1262-1270, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34663942

RESUMEN

DNA deaminase enzymes play key roles in immunity and have recently been harnessed for their biotechnological applications. In base editors (BEs), the combination of DNA deaminase mutator activity with CRISPR-Cas localization confers the powerful ability to directly convert one target DNA base into another. While efforts have been made to improve targeting efficiency and precision, all BEs so far use a constitutively active DNA deaminase. The absence of regulatory control over promiscuous deaminase activity remains a major limitation to accessing the widespread potential of BEs. Here, we reveal sites that permit splitting of DNA cytosine deaminases into two inactive fragments, whose reapproximation reconstitutes activity. These findings allow for the development of split-engineered BEs (seBEs), which newly enable small-molecule control over targeted mutator activity. We show that the seBE strategy facilitates robust regulated editing with BE scaffolds containing diverse deaminases, offering a generalizable solution for temporally controlling precision genome editing.


Asunto(s)
Nucleósido Desaminasas/química , Biotecnología , Sistemas CRISPR-Cas , Citosina/química , ADN/química , Roturas del ADN de Doble Cadena , Escherichia coli , Edición Génica , Conformación de Ácido Nucleico , Nucleósido Desaminasas/genética , Sirolimus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA