Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cell ; 184(17): 4377-4379, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34416145

RESUMEN

Greater understanding of the events preceding neurodegeneration is needed to design effective preventive and therapeutic strategies. In this issue of Cell, Bowles et al. (2021) report cerebral organoids that reveal early events in frontotemporal dementia pathogenesis due to mutations in microtubule-associated protein tau (MAPT), shedding light on a novel mechanism involving abnormal splicing and glutamate signaling.


Asunto(s)
Demencia Frontotemporal , Organoides , Humanos , Mutación , Proteínas tau/genética
2.
Cell ; 184(8): 2084-2102.e19, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33765444

RESUMEN

The human brain has undergone rapid expansion since humans diverged from other great apes, but the mechanism of this human-specific enlargement is still unknown. Here, we use cerebral organoids derived from human, gorilla, and chimpanzee cells to study developmental mechanisms driving evolutionary brain expansion. We find that neuroepithelial differentiation is a protracted process in apes, involving a previously unrecognized transition state characterized by a change in cell shape. Furthermore, we show that human organoids are larger due to a delay in this transition, associated with differences in interkinetic nuclear migration and cell cycle length. Comparative RNA sequencing (RNA-seq) reveals differences in expression dynamics of cell morphogenesis factors, including ZEB2, a known epithelial-mesenchymal transition regulator. We show that ZEB2 promotes neuroepithelial transition, and its manipulation and downstream signaling leads to acquisition of nonhuman ape architecture in the human context and vice versa, establishing an important role for neuroepithelial cell shape in human brain expansion.


Asunto(s)
Evolución Biológica , Encéfalo/citología , Forma de la Célula/fisiología , Animales , Encéfalo/metabolismo , Diferenciación Celular , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Transición Epitelial-Mesenquimal/genética , Expresión Génica , Gorilla gorilla , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Neurogénesis , Neuronas/citología , Neuronas/metabolismo , Organoides/citología , Organoides/metabolismo , Pan troglodytes , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo
3.
Nature ; 630(8017): 596-608, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38898293

RESUMEN

The evolution of the modern human brain was accompanied by distinct molecular and cellular specializations, which underpin our diverse cognitive abilities but also increase our susceptibility to neurological diseases. These features, some specific to humans and others shared with related species, manifest during different stages of brain development. In this multi-stage process, neural stem cells proliferate to produce a large and diverse progenitor pool, giving rise to excitatory or inhibitory neurons that integrate into circuits during further maturation. This process unfolds over varying time scales across species and has progressively become slower in the human lineage, with differences in tempo correlating with differences in brain size, cell number and diversity, and connectivity. Here we introduce the terms 'bradychrony' and 'tachycrony' to describe slowed and accelerated developmental tempos, respectively. We review how recent technical advances across disciplines, including advanced engineering of in vitro models, functional comparative genetics and high-throughput single-cell profiling, are leading to a deeper understanding of how specializations of the human brain arise during bradychronic neurodevelopment. Emerging insights point to a central role for genetics, gene-regulatory networks, cellular innovations and developmental tempo, which together contribute to the establishment of human specializations during various stages of neurodevelopment and at different points in evolution.


Asunto(s)
Evolución Biológica , Encéfalo , Humanos , Encéfalo/citología , Encéfalo/fisiología , Encéfalo/crecimiento & desarrollo , Animales , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Factores de Tiempo , Neuronas/citología , Neuronas/fisiología , Análisis de la Célula Individual , Redes Reguladoras de Genes
4.
Nature ; 602(7895): 112-116, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35046577

RESUMEN

The biological basis of male-female brain differences has been difficult to elucidate in humans. The most notable morphological difference is size, with male individuals having on average a larger brain than female individuals1,2, but a mechanistic understanding of how this difference arises remains unknown. Here we use brain organoids3 to show that although sex chromosomal complement has no observable effect on neurogenesis, sex steroids-namely androgens-lead to increased proliferation of cortical progenitors and an increased neurogenic pool. Transcriptomic analysis and functional studies demonstrate downstream effects on histone deacetylase activity and the mTOR pathway. Finally, we show that androgens specifically increase the neurogenic output of excitatory neuronal progenitors, whereas inhibitory neuronal progenitors are not increased. These findings reveal a role for androgens in regulating the number of excitatory neurons and represent a step towards understanding the origin of sex-related brain differences in humans.


Asunto(s)
Andrógenos/farmacología , Encéfalo/citología , Excitabilidad Cortical/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Organoides/citología , Organoides/efectos de los fármacos , Caracteres Sexuales , Potenciales de Acción/efectos de los fármacos , Andrógenos/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/enzimología , Encéfalo/metabolismo , Recuento de Células , Femenino , Perfilación de la Expresión Génica , Histona Desacetilasas/genética , Humanos , Masculino , Inhibición Neural/efectos de los fármacos , Neuroglía/citología , Neuroglía/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos , Organoides/enzimología , Organoides/metabolismo , Células Madre/citología , Células Madre/efectos de los fármacos , Serina-Treonina Quinasas TOR/genética
5.
Nature ; 609(7929): 907-910, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36171373

RESUMEN

Self-organizing three-dimensional cellular models derived from human pluripotent stem cells or primary tissue have great potential to provide insights into how the human nervous system develops, what makes it unique and how disorders of the nervous system arise, progress and could be treated. Here, to facilitate progress and improve communication with the scientific community and the public, we clarify and provide a basic framework for the nomenclature of human multicellular models of nervous system development and disease, including organoids, assembloids and transplants.


Asunto(s)
Consenso , Sistema Nervioso , Organoides , Terminología como Asunto , Humanos , Modelos Biológicos , Sistema Nervioso/citología , Sistema Nervioso/patología , Organoides/citología , Organoides/patología , Células Madre Pluripotentes/citología
6.
Bioessays ; : e2400105, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101295

RESUMEN

Organoids are quickly becoming an accepted model for understanding human biology and disease. Pluripotent stem cells (PSC) provide a starting point for many organs and enable modeling of the embryonic development and maturation of such organs. The foundation of PSC-derived organoids can be found in elegant developmental studies demonstrating the remarkable ability of immature cells to undergo histogenesis even when taken out of the embryo context. PSC-organoids are an evolution of earlier methods such as embryoid bodies, taken to a new level with finer control and in some cases going beyond tissue histogenesis to organ-like morphogenesis. But many of the discoveries that led to organoids were not necessarily planned, but rather the result of inquisitive minds with freedom to explore. Protecting such curiosity-led research through flexible funding will be important going forward if we are to see further ground-breaking discoveries.

7.
Nat Mater ; 20(2): 145-155, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33199860

RESUMEN

In recent years considerable progress has been made in the development of faithful procedures for the differentiation of human pluripotent stem cells (hPSCs). An important step in this direction has also been the derivation of organoids. This technology generally relies on traditional three-dimensional culture techniques that exploit cell-autonomous self-organization responses of hPSCs with minimal control over the external inputs supplied to the system. The convergence of stem cell biology and bioengineering offers the possibility to provide these stimuli in a controlled fashion, resulting in the development of naturally inspired approaches to overcome major limitations of this nascent technology. Based on the current developments, we emphasize the achievements and ongoing challenges of bringing together hPSC organoid differentiation, bioengineering and ethics. This Review underlines the need for providing engineering solutions to gain control of self-organization and functionality of hPSC-derived organoids. We expect that this knowledge will guide the community to generate higher-grade hPSC-derived organoids for further applications in developmental biology, drug screening, disease modelling and personalized medicine.


Asunto(s)
Bioingeniería , Organoides/crecimiento & desarrollo , Células Madre Pluripotentes/metabolismo , Humanos , Organoides/citología , Células Madre Pluripotentes/citología
8.
EMBO J ; 36(10): 1316-1329, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28283582

RESUMEN

Cerebral organoids recapitulate human brain development at a considerable level of detail, even in the absence of externally added signaling factors. The patterning events driving this self-organization are currently unknown. Here, we examine the developmental and differentiative capacity of cerebral organoids. Focusing on forebrain regions, we demonstrate the presence of a variety of discrete ventral and dorsal regions. Clearing and subsequent 3D reconstruction of entire organoids reveal that many of these regions are interconnected, suggesting that the entire range of dorso-ventral identities can be generated within continuous neuroepithelia. Consistent with this, we demonstrate the presence of forebrain organizing centers that express secreted growth factors, which may be involved in dorso-ventral patterning within organoids. Furthermore, we demonstrate the timed generation of neurons with mature morphologies, as well as the subsequent generation of astrocytes and oligodendrocytes. Our work provides the methodology and quality criteria for phenotypic analysis of brain organoids and shows that the spatial and temporal patterning events governing human brain development can be recapitulated in vitro.


Asunto(s)
Encéfalo/embriología , Diferenciación Celular , Proliferación Celular , Organoides/crecimiento & desarrollo , Tipificación del Cuerpo , Humanos , Análisis Espacio-Temporal
9.
Nat Methods ; 15(7): 505-511, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29867192

RESUMEN

Specialized RNA-seq methods are required to identify the 5' ends of transcripts, which are critical for studies of gene regulation, but these methods have not been systematically benchmarked. We directly compared six such methods, including the performance of five methods on a single human cellular RNA sample and a new spike-in RNA assay that helps circumvent challenges resulting from uncertainties in annotation and RNA processing. We found that the 'cap analysis of gene expression' (CAGE) method performed best for mRNA and that most of its unannotated peaks were supported by evidence from other genomic methods. We applied CAGE to eight brain-related samples and determined sample-specific transcription start site (TSS) usage, as well as a transcriptome-wide shift in TSS usage between fetal and adult brain.


Asunto(s)
ARN/química , Análisis de Secuencia de ARN/métodos , Secuencia de Bases , Encéfalo , Células Madre Embrionarias , Biblioteca de Genes , Humanos , ARN/genética , ARN/metabolismo
10.
Nat Methods ; 15(12): 1126, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30459407

RESUMEN

The original version of this paper contained an incorrect primer sequence. In the Methods subsection "Rampage libraries," the text for modification 3 stated that the reverse primer used for library indexing was 5'-CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTGACTGGAGT-3'. The correct sequence of the oligonucleotide used is 5'-CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3'. This error has been corrected in the PDF and HTML versions of the paper.

11.
Nature ; 501(7467): 373-9, 2013 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-23995685

RESUMEN

The complexity of the human brain has made it difficult to study many brain disorders in model organisms, highlighting the need for an in vitro model of human brain development. Here we have developed a human pluripotent stem cell-derived three-dimensional organoid culture system, termed cerebral organoids, that develop various discrete, although interdependent, brain regions. These include a cerebral cortex containing progenitor populations that organize and produce mature cortical neuron subtypes. Furthermore, cerebral organoids are shown to recapitulate features of human cortical development, namely characteristic progenitor zone organization with abundant outer radial glial stem cells. Finally, we use RNA interference and patient-specific induced pluripotent stem cells to model microcephaly, a disorder that has been difficult to recapitulate in mice. We demonstrate premature neuronal differentiation in patient organoids, a defect that could help to explain the disease phenotype. Together, these data show that three-dimensional organoids can recapitulate development and disease even in this most complex human tissue.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Microcefalia/patología , Modelos Biológicos , Organoides/citología , Organoides/crecimiento & desarrollo , Técnicas de Cultivo de Tejidos/métodos , Animales , Encéfalo/anatomía & histología , Encéfalo/citología , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/patología , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/patología , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/patología , Neurogénesis , Neuronas/citología , Neuronas/patología , Organoides/embriología , Organoides/patología
13.
BMC Biol ; 15(1): 55, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28662661

RESUMEN

Model organisms are widely used in research as accessible and convenient systems to study a particular area or question in biology. Traditionally only a handful of organisms have been widely studied, but modern research tools are enabling researchers to extend the set of model organisms to include less-studied and more unusual systems. This Forum highlights a range of 'non-model model organisms' as emerging systems for tackling questions across the whole spectrum of biology (and beyond), the opportunities and challenges, and the outlook for the future.


Asunto(s)
Biología , Eucariontes , Modelos Animales , Animales , Plantas
14.
Dev Biol ; 420(2): 199-209, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27402594

RESUMEN

The ability to model human brain development in vitro represents an important step in our study of developmental processes and neurological disorders. Protocols that utilize human embryonic and induced pluripotent stem cells can now generate organoids which faithfully recapitulate, on a cell-biological and gene expression level, the early period of human embryonic and fetal brain development. In combination with novel gene editing tools, such as CRISPR, these methods represent an unprecedented model system in the field of mammalian neural development. In this review, we focus on the similarities of current organoid methods to in vivo brain development, discuss their limitations and potential improvements, and explore the future venues of brain organoid research.


Asunto(s)
Encéfalo/embriología , Organoides/embriología , Humanos , Modelos Neurológicos , Trastornos del Neurodesarrollo/etiología , Técnicas de Cultivo de Órganos/métodos , Técnicas de Cultivo de Órganos/tendencias , Organogénesis
16.
Nat Genet ; 38(6): 623-5, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16682970

RESUMEN

Joubert syndrome-related disorders (JSRD) are a group of syndromes sharing the neuroradiological features of cerebellar vermis hypoplasia and a peculiar brainstem malformation known as the 'molar tooth sign'. We identified mutations in the CEP290 gene in five families with variable neurological, retinal and renal manifestations. CEP290 expression was detected mostly in proliferating cerebellar granule neuron populations and showed centrosome and ciliary localization, linking JSRDs to other human ciliopathies.


Asunto(s)
Antígenos de Neoplasias/genética , Encéfalo/anomalías , Mutación , Proteínas de Neoplasias/genética , Animales , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular , Centrosoma/metabolismo , Proteínas del Citoesqueleto , Humanos , Ratones , Proteínas de Neoplasias/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Síndrome
17.
bioRxiv ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38370637

RESUMEN

Microelectrode array (MEA) recordings are commonly used to compare firing and burst rates in neuronal cultures. MEA recordings can also reveal microscale functional connectivity, topology, and network dynamics-patterns seen in brain networks across spatial scales. Network topology is frequently characterized in neuroimaging with graph theoretical metrics. However, few computational tools exist for analyzing microscale functional brain networks from MEA recordings. Here, we present a MATLAB MEA network analysis pipeline (MEA-NAP) for raw voltage time-series acquired from single- or multi-well MEAs. Applications to 3D human cerebral organoids or 2D human-derived or murine cultures reveal differences in network development, including topology, node cartography, and dimensionality. MEA-NAP incorporates multi-unit template-based spike detection, probabilistic thresholding for determining significant functional connections, and normalization techniques for comparing networks. MEA-NAP can identify network-level effects of pharmacologic perturbation and/or disease-causing mutations and, thus, can provide a translational platform for revealing mechanistic insights and screening new therapeutic approaches.

18.
Animals (Basel) ; 14(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891588

RESUMEN

The documentation, preservation and rescue of biological diversity increasingly uses living biological samples. Persistent associations between species, biosamples, such as tissues and cell lines, and the accompanying data are indispensable for using, exchanging and benefiting from these valuable materials. Explicit authentication of such biosamples by assigning unique and robust identifiers is therefore required to allow for unambiguous referencing, avoid identification conflicts and maintain reproducibility in research. A predefined nomenclature based on uniform rules would facilitate this process. However, such a nomenclature is currently lacking for animal biological material. We here present a first, standardized, human-readable nomenclature design, which is sufficient to generate unique and stable identifying names for animal cellular material with a focus on wildlife species. A species-specific human- and machine-readable syntax is included in the proposed standard naming scheme, allowing for the traceability of donated material and cultured cells, as well as data FAIRification. Only when it is consistently applied in the public domain, as publications and inter-institutional samples and data are exchanged, distributed and stored centrally, can the risks of misidentification and loss of traceability be mitigated. This innovative globally applicable identification system provides a standard for a sustainable structure for the long-term storage of animal bio-samples in cryobanks and hence facilitates current as well as future species conservation and biomedical research.

19.
Cell Stem Cell ; 30(10): 1351-1367.e10, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37802039

RESUMEN

Progression through fate decisions determines cellular composition and tissue architecture, but how that same architecture may impact cell fate is less clear. We took advantage of organoids as a tractable model to interrogate this interaction of form and fate. Screening methodological variations revealed that common protocol adjustments impacted various aspects of morphology, from macrostructure to tissue architecture. We examined the impact of morphological perturbations on cell fate through integrated single nuclear RNA sequencing (snRNA-seq) and spatial transcriptomics. Regardless of the specific protocol, organoids with more complex morphology better mimicked in vivo human fetal brain development. Organoids with perturbed tissue architecture displayed aberrant temporal progression, with cells being intermingled in both space and time. Finally, encapsulation to impart a simplified morphology led to disrupted tissue cytoarchitecture and a similar abnormal maturational timing. These data demonstrate that cells of the developing brain require proper spatial coordinates to undergo correct temporal progression.


Asunto(s)
Encéfalo , Organoides , Humanos , Diferenciación Celular , Análisis de Secuencia de ARN
20.
Nat Genet ; 55(9): 1483-1493, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37592024

RESUMEN

Our understanding of the genetics of the human cerebral cortex is limited both in terms of the diversity and the anatomical granularity of brain structural phenotypes. Here we conducted a genome-wide association meta-analysis of 13 structural and diffusion magnetic resonance imaging-derived cortical phenotypes, measured globally and at 180 bilaterally averaged regions in 36,663 individuals and identified 4,349 experiment-wide significant loci. These phenotypes include cortical thickness, surface area, gray matter volume, measures of folding, neurite density and water diffusion. We identified four genetic latent structures and causal relationships between surface area and some measures of cortical folding. These latent structures partly relate to different underlying gene expression trajectories during development and are enriched for different cell types. We also identified differential enrichment for neurodevelopmental and constrained genes and demonstrate that common genetic variants associated with cortical expansion are associated with cephalic disorders. Finally, we identified complex interphenotype and inter-regional genetic relationships among the 13 phenotypes, reflecting the developmental differences among them. Together, these analyses identify distinct genetic organizational principles of the cortex and their correlates with neurodevelopment.


Asunto(s)
Corteza Cerebral , Estudio de Asociación del Genoma Completo , Humanos , Corteza Cerebral/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Neuroimagen , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA