Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mar Drugs ; 18(8)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781644

RESUMEN

Collagen-based skin-like scaffolds (CBSS) are promising alternatives to skin grafts to repair wounds and injuries. In this work, we propose that the common marine invertebrate sea urchin represents a promising and eco-friendly source of native collagen to develop innovative CBSS for skin injury treatment. Sea urchin food waste after gonad removal was here used to extract fibrillar glycosaminoglycan (GAG)-rich collagen to produce bilayer (2D + 3D) CBSS. Microstructure, mechanical stability, permeability to water and proteins, ability to exclude bacteria and act as scaffolding for fibroblasts were evaluated. Our data show that the thin and dense 2D collagen membrane strongly reduces water evaporation (less than 5% of water passes through the membrane after 7 days) and protein diffusion (less than 2% of BSA passes after 7 days), and acts as a barrier against bacterial infiltration (more than 99% of the different tested bacterial species is retained by the 2D collagen membrane up to 48 h), thus functionally mimicking the epidermal layer. The thick sponge-like 3D collagen scaffold, structurally and functionally resembling the dermal layer, is mechanically stable in wet conditions, biocompatible in vitro (seeded fibroblasts are viable and proliferate), and efficiently acts as a scaffold for fibroblast infiltration. Thus, thanks to their chemical and biological properties, CBSS derived from sea urchins might represent a promising, eco-friendly, and economically sustainable biomaterial for tissue regenerative medicine.


Asunto(s)
Colágenos Fibrilares/farmacología , Fibroblastos/fisiología , Medicina Regenerativa , Erizos de Mar/química , Alimentos Marinos , Piel Artificial , Andamios del Tejido , Residuos , Animales , Técnicas de Cultivo de Célula , Línea Celular , Proliferación Celular , Supervivencia Celular , Cricetinae , Colágenos Fibrilares/química , Colágenos Fibrilares/aislamiento & purificación , Fibroblastos/metabolismo , Manipulación de Alimentos
2.
J Nat Prod ; 82(1): 35-44, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30615447

RESUMEN

The increasing incidence of infections caused by drug-resistant pathogens requires new efforts for the discovery of novel antibiotics. By screening microbial extracts in an assay aimed at identifying compounds interfering with cell wall biosynthesis, based on differential activity against a Staphylococcus aureus strain and its isogenic l-form, the potent enduracyclinones (1, 2), containing the uncommon amino acid enduracididine linked to a six-ring aromatic skeleton, were discovered from different Nonomuraea strains. The structures of 1 and 2 were established through a combination of derivatizations, oxidative cleavages, and NMR analyses of natural and 13C-15N-labeled compounds. Analysis of the biosynthetic cluster provides the combination of genes for the synthesis of enduracididine and type II polyketide synthases. Enduracyclinones are active against Gram-positive pathogens (especially Staphylococcus spp.), including multi-drug-resistant strains, with minimal inhibitory concentrations in the range of 0.0005 to 4 µg mL-1 and with limited toxicity toward eukaryotic cells. The combined results from assays and macromolecular syntheses suggest a possible dual mechanism of action in which both peptidoglycan and DNA syntheses are inhibited by these molecules.


Asunto(s)
Antibacterianos/aislamiento & purificación , Policétidos/aislamiento & purificación , Pirrolidinas/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Minería de Datos , Familia de Multigenes , Policétidos/química , Policétidos/metabolismo , Policétidos/farmacología
3.
Crit Rev Microbiol ; 44(1): 1-30, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28485690

RESUMEN

Escherichia coli can commonly be found, either as a commensal, probiotic or a pathogen, in the human gastrointestinal (GI) tract. Biofilm formation and its regulation is surprisingly variable, although distinct regulatory pattern of red, dry and rough (rdar) biofilm formation arise in certain pathovars and even clones. In the GI tract, environmental conditions, signals from the host and from commensal bacteria contribute to shape E. coli biofilm formation within the multi-faceted multicellular communities in a complex and integrated fashion. Although some major regulatory networks, adhesion factors and extracellular matrix components constituting E. coli biofilms have been recognized, these processes have mainly been characterized in vitro and in the context of interaction of E. coli strains with intestinal epithelial cells. However, direct observation of E. coli cells in situ, and the vast number of genes encoding surface appendages on the core or accessory genome of E. coli suggests the complexity of the biofilm process to be far from being fully understood. In this review, we summarize biofilm formation mechanisms of commensal, probiotic and pathogenic E. coli in the context of the gastrointestinal tract.


Asunto(s)
Biopelículas , Escherichia coli/fisiología , Tracto Gastrointestinal/microbiología , Animales , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Tracto Gastrointestinal/inmunología , Regulación Bacteriana de la Expresión Génica , Humanos
4.
Environ Microbiol ; 19(11): 4551-4563, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28892259

RESUMEN

Production of cellulose, a stress response-mediated process in enterobacteria, is modulated in Escherichia coli by the activity of the two pyrimidine nucleotide biosynthetic pathways, namely, the de novo biosynthetic pathway and the salvage pathway, which relies on the environmental availability of pyrimidine nitrogenous bases. We had previously reported that prevalence of the salvage over the de novo pathway triggers cellulose production via synthesis of the second messenger c-di-GMP by the DgcQ (YedQ) diguanylate cyclase. In this work, we show that DgcQ enzymatic activity is enhanced by UTP, whilst being inhibited by N-carbamoyl-aspartate, an intermediate of the de novo pathway. Thus, direct allosteric control by these ligands allows full DgcQ activity exclusively in cells actively synthesizing pyrimidine nucleotides via the salvage pathway. Inhibition of DgcQ activity by N-carbamoyl-aspartate appears to be favoured by protein-protein interaction between DgcQ and PyrB, a subunit of aspartate transcarbamylase, which synthesizes N-carbamoyl-aspartate. Our results suggest that availability of pyrimidine bases might be sensed, somehow paradoxically, as an environmental stress by E. coli. We hypothesize that this link might have evolved since stress events, leading to extensive DNA/RNA degradation or lysis of neighbouring cells, can result in increased pyrimidine concentrations and activation of the salvage pathway.


Asunto(s)
Ácido Aspártico/análogos & derivados , Celulosa/biosíntesis , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Liasas de Fósforo-Oxígeno/metabolismo , Uridina Trifosfato/metabolismo , Aspartato Carbamoiltransferasa , Ácido Aspártico/metabolismo , Vías Biosintéticas , Celulosa/metabolismo , GMP Cíclico/biosíntesis , ADN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Liasas de Fósforo-Oxígeno/genética , ARN/metabolismo
5.
J Bacteriol ; 198(1): 7-11, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26148715

RESUMEN

In recent years, Escherichia coli has served as one of a few model bacterial species for studying cyclic di-GMP (c-di-GMP) signaling. The widely used E. coli K-12 laboratory strains possess 29 genes encoding proteins with GGDEF and/or EAL domains, which include 12 diguanylate cyclases (DGC), 13 c-di-GMP-specific phosphodiesterases (PDE), and 4 "degenerate" enzymatically inactive proteins. In addition, six new GGDEF and EAL (GGDEF/EAL) domain-encoding genes, which encode two DGCs and four PDEs, have recently been found in genomic analyses of commensal and pathogenic E. coli strains. As a group of researchers who have been studying the molecular mechanisms and the genomic basis of c-di-GMP signaling in E. coli, we now propose a general and systematic dgc and pde nomenclature for the enzymatically active GGDEF/EAL domain-encoding genes of this model species. This nomenclature is intuitive and easy to memorize, and it can also be applied to additional genes and proteins that might be discovered in various strains of E. coli in future studies.


Asunto(s)
GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/clasificación , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Terminología como Asunto , GMP Cíclico/genética , GMP Cíclico/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Transducción de Señal
6.
Langmuir ; 32(31): 7965-74, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27434665

RESUMEN

Curli are bacterial appendages involved in the adhesion of cells to surfaces; their synthesis is regulated by many genes such as csgD and ompR. The expression of the two curli subunits (CsgA and CsgB) in Escherichia coli (E. coli) is regulated by CsgD; at the same time, csgD transcription is under the control of OmpR. Therefore, both genes are involved in the control of curli production. In this work, we elucidated the role of these genes in the nanomechanical and adhesive properties of E. coli MG1655 (a laboratory strain not expressing significant amount of curli) and its curli-producing mutants overexpressing OmpR and CsgD, employing atomic force microscopy (AFM). Nanomechanical analysis revealed that the expression of these genes gave origin to cells with a lower Young's modulus (E) and turgidity (P0), whereas the adhesion forces were unaffected when genes involved in curli formation were expressed. AFM was also employed to study the primary structure of the curli expressed through the freely jointed chain (FJC) model for polymers. CsgD increased the number of curli on the surface more than OmpR did, and the overexpression of both genes did not result in a greater number of curli. Neither of the genes had an impact on the structure (total length of the polymer and number and length of Kuhn segments) of the curli. Our results further suggest that, despite the widely assumed role of curli in cell adhesion, cell adhesion force is also dictated by surface properties because no relation between the number of curli expressed on the surface and cell adhesion was found.


Asunto(s)
Adhesión Bacteriana/fisiología , Proteínas Bacterianas/metabolismo , Módulo de Elasticidad , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Transactivadores/metabolismo
7.
Microbiology (Reading) ; 160(Pt 9): 1832-1844, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24934621

RESUMEN

The enterobacterium Escherichia coli can utilize a variety of molecules as sulfur sources, including cysteine, sulfate, thiosulfate and organosulfonates. An intermediate of the sulfate assimilation pathway, adenosine 59-phosphosulfate (APS), also acts as a signal molecule regulating the utilization of different sulfur sources. In this work, we show that inactivation of the cysH gene, leading to accumulation of phosphoadenosine 59-phosphosulfate (PAPS), also an intermediate of the sulfate assimilation pathway, results in increased surface adhesion and cell aggregation by activating the expression of the curli-encoding csgBAC operon. In contrast, curli production was unaffected by the inactivation of any other gene belonging to the sulfate assimilation pathway. Overexpression of the cysH gene downregulated csgBAC transcription, further suggesting a link between intracellular PAPS levels and curli gene expression. In addition to curli components, the Flu, OmpX and Slp proteins were also found in increased amounts in the outer membrane compartment of the cysH mutant; deletion of the corresponding genes suggested that these proteins also contribute to surface adhesion and cell surface properties in this strain. Our results indicate that, similar to APS, PAPS also acts as a signal molecule, albeit with a distinct mechanism and role: whilst APS regulates organosulfonate utilization, PAPS would couple availability of sulfur sources to remodulation of the cell surface, as part of a more global effect on cell physiology.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Oxidorreductasas/metabolismo , Fosfoadenosina Fosfosulfato/metabolismo , Transducción de Señal , Proteínas de Escherichia coli/genética , Eliminación de Gen , Operón , Oxidorreductasas/genética
8.
Biofilm ; 7: 100180, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38370152

RESUMEN

Antivirulence agents are considered a promising strategy to treat bacterial infections. Fluoropyrimidines possess antivirulence and antibiofilm activity against Gram-negative bacteria; however, their mechanism of action is yet unknown. Consistent with their known antibiofilm activity, fluoropyrimidines, particularly 5-fluorocytosine (5-FC), impair curli-dependent surface adhesion by Escherichia coli MG1655 via downregulation of curli fimbriae gene transcription. Curli inhibition requires fluoropyrimidine conversion into fluoronucleotides and is not mediated by c-di-GMP or the ymg-rcs envelope stress response axis, previously suggested as the target of fluorouracil antibiofilm activity in E. coli. In contrast, 5-FC hampered the transcription of curli activators RpoS and stimulated the expression of Fis, a curli repressor affected by nucleotide availability. This last observation suggested a possible perturbation of the de novo pyrimidine biosynthesis by 5-FC: indeed, exposure to 5-FC resulted in a ca. 2-fold reduction of UMP intracellular levels while not affecting ATP. Consistently, expression of the de novo pyrimidine biosynthesis genes carB and pyrB was upregulated in the presence of 5-FC. Our results suggest that the antibiofilm activity of fluoropyrimidines is mediated, at least in part, by perturbation of the pyrimidine nucleotide pool. We screened a genome library in search of additional determinants able to counteract the effects of 5-FC. We found that a DNA fragment encoding the unknown protein D8B36_18,480 and the N-terminal domain of the penicillin-binding protein 1b (PBP1b), involved in peptidoglycan synthesis, could restore curli production in the presence of 5-FC. Deletion of the PBP1b-encoding gene mrcB, induced csgBAC transcription, while overexpression of the gene encoding the D8B36_18,480 protein obliterated its expression, possibly as part of a coordinated response in curli regulation with PBP1b. While the two proteins do not appear to be direct targets of 5-FC, their involvement in curli regulation suggests a connection between peptidoglycan biosynthesis and curli production, which might become even more relevant upon pyrimidine starvation and reduced availability of UDP-sugars needed in cell wall biosynthesis. Overall, our findings link the antibiofilm activity of fluoropyrimidines to the redirection of at least two global regulators (RpoS, Fis) by induction of pyrimidine starvation. This highlights the importance of the de novo pyrimidines biosynthesis pathway in controlling virulence mechanisms in different bacteria and makes the pathway a potential target for antivirulence strategies.

9.
Appl Microbiol Biotechnol ; 97(16): 7325-36, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23584245

RESUMEN

In Gram-negative bacteria, production of the signal molecule c-di-GMP by diguanylate cyclases (DGCs) is a key trigger for biofilm formation, which, in turn, is often required for the development of chronic bacterial infections. Thus, DGCs represent interesting targets for new chemotherapeutic drugs with anti-biofilm activity. We searched for inhibitors of the WspR protein, a Pseudomonas aeruginosa DGC involved in biofilm formation and production of virulence factors, using a set of microbiological assays developed in an Escherichia coli strain expressing the wspR gene. We found that azathioprine, an immunosuppressive drug used in the treatment of Crohn's disease, was able to inhibit WspR-dependent c-di-GMP biosynthesis in bacterial cells. However, in vitro enzymatic assays ruled out direct inhibition of WspR DGC activity either by azathioprine or by its metabolic derivative 2-amino-6-mercapto-purine riboside. Azathioprine is an inhibitor of 5-aminoimidazole-4-carboxamide ribotide (AICAR) transformylase, an enzyme involved in purine biosynthesis, which suggests that inhibition of c-di-GMP biosynthesis by azathioprine may be due to perturbation of intracellular nucleotide pools. Consistent with this hypothesis, WspR activity is abolished in an E. coli purH mutant strain, unable to produce AICAR transformylase. Despite its effect on WspR, azathioprine failed to prevent biofilm formation by P. aeruginosa; however, it affected production of extracellular structures in E. coli clinical isolates, suggesting efficient inhibition of c-di-GMP biosynthesis in this bacterium. Our results indicate that azathioprine can prevent biofilm formation in E. coli through inhibition of c-di-GMP biosynthesis and suggest that such inhibition might contribute to its anti-inflammatory activity in Crohn's disease.


Asunto(s)
Azatioprina/metabolismo , GMP Cíclico/análogos & derivados , Escherichia coli/efectos de los fármacos , Nucleótidos/antagonistas & inhibidores , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/metabolismo , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , GMP Cíclico/biosíntesis , Escherichia coli/metabolismo , Escherichia coli/fisiología , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiología
10.
Nucleic Acids Res ; 39(13): 5338-55, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21398637

RESUMEN

Specific promoter recognition by bacterial RNA polymerase is mediated by σ subunits, which assemble with RNA polymerase core enzyme (E) during transcription initiation. However, σ(70) (the housekeeping σ subunit) and σ(S) (an alternative σ subunit mostly active during slow growth) recognize almost identical promoter sequences, thus raising the question of how promoter selectivity is achieved in the bacterial cell. To identify novel sequence determinants for selective promoter recognition, we performed run-off/microarray (ROMA) experiments with RNA polymerase saturated either with σ(70) (Eσ(70)) or with σ(S) (Eσ(S)) using the whole Escherichia coli genome as DNA template. We found that Eσ(70), in the absence of any additional transcription factor, preferentially transcribes genes associated with fast growth (e.g. ribosomal operons). In contrast, Eσ(S) efficiently transcribes genes involved in stress responses, secondary metabolism as well as RNAs from intergenic regions with yet-unknown function. Promoter sequence comparison suggests that, in addition to different conservation of the -35 sequence and of the UP element, selective promoter recognition by either form of RNA polymerase can be affected by the A/T content in the -10/+1 region. Indeed, site-directed mutagenesis experiments confirmed that an A/T bias in the -10/+1 region could improve promoter recognition by Eσ(S).


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Regiones Promotoras Genéticas , Factor sigma/metabolismo , Transcripción Genética , Secuencia de Bases , Secuencia Conservada , Escherichia coli/genética , Perfilación de la Expresión Génica , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Subunidades de Proteína/metabolismo , Regulón
11.
J Crohns Colitis ; 17(12): 1988-2001, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37462681

RESUMEN

IFNγ-producing ex-Th17 cells ['Th1/17'] were shown to play a key pathogenic role in experimental colitis and are abundant in the intestine. Here, we identified and characterised a novel, potentially colitogenic subset of Th17 cells in the intestine of patients with Crohn's disease [CD]. Human Th17 cells expressing CCR5 ['pTh17'] co-expressed T-bet and RORC/γt and produced very high levels of IL-17, together with IFN-γ. They had a gene signature of Th17 effector cells and were distinct from established Th1/17 cells. pTh17 cells, but not Th1/17 cells, were associated with intestinal inflammation in CD, and decreased upon successful anti-TNF therapy with infliximab. Conventional CCR5[-]Th17 cells differentiated to pTh17 cells with IL-23 in vitro. Moreover, anti-IL-23 therapy with risankizumab strongly reduced pTh17 cells in the intestine. Importantly, intestinal pTh17 cells were selectively activated by adherent-invasive Escherichia coli [AIEC], but not by a commensal/probiotic E. coli strain. AIEC induced high levels of IL-23 and RANTES from dendritic cells [DC]. Intestinal CCR5+Th1/17 cells responded instead to cytomegalovirus and were reduced in ulcerative colitis [UC], suggesting an unexpected protective role. In conclusion, we identified an IL-23-inducible subset of human intestinal Th17 cells. pTh17 cells produced high levels of pro-inflammatory cytokines, were selectively associated with intestinal inflammation in CD, and responded to CD-associated AIEC, suggesting a key colitogenic role.


Asunto(s)
Enfermedad de Crohn , Infecciones por Escherichia coli , Humanos , Enfermedad de Crohn/patología , Escherichia coli , Células Th17/patología , Inhibidores del Factor de Necrosis Tumoral , Intestinos/patología , Inflamación/patología , Infecciones por Escherichia coli/complicaciones , Infecciones por Escherichia coli/patología , Interleucina-23 , Mucosa Intestinal/patología , Adhesión Bacteriana
12.
BMC Microbiol ; 12: 270, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23171129

RESUMEN

BACKGROUND: Transition from planktonic cells to biofilm is mediated by production of adhesion factors, such as extracellular polysaccharides (EPS), and modulated by complex regulatory networks that, in addition to controlling production of adhesion factors, redirect bacterial cell metabolism to the biofilm mode. RESULTS: Deletion of the pnp gene, encoding polynucleotide phosphorylase, an RNA processing enzyme and a component of the RNA degradosome, results in increased biofilm formation in Escherichia coli. This effect is particularly pronounced in the E. coli strain C-1a, in which deletion of the pnp gene leads to strong cell aggregation in liquid medium. Cell aggregation is dependent on the EPS poly-N-acetylglucosamine (PNAG), thus suggesting negative regulation of the PNAG biosynthetic operon pgaABCD by PNPase. Indeed, pgaABCD transcript levels are higher in the pnp mutant. Negative control of pgaABCD expression by PNPase takes place at mRNA stability level and involves the 5'-untranslated region of the pgaABCD transcript, which serves as a cis-element regulating pgaABCD transcript stability and translatability. CONCLUSIONS: Our results demonstrate that PNPase is necessary to maintain bacterial cells in the planktonic mode through down-regulation of pgaABCD expression and PNAG production.


Asunto(s)
Acetilglucosamina/metabolismo , Biopelículas/crecimiento & desarrollo , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Eliminación de Gen , Perfilación de la Expresión Génica , Polirribonucleótido Nucleotidiltransferasa/genética , Estabilidad del ARN
13.
Biofouling ; 28(8): 823-33, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22871137

RESUMEN

This work showed that perturbations of the physiological steady-state level of reactive oxygen species (ROS) affected biofilm genesis and the characteristics of the model bacterium Azotobacter vinelandii. To get a continuous endogenous source of ROS, a strain exposed to chronic sub-lethal oxidative stress was deprived of the gene coding for the antioxidant rhodanese-like protein RhdA (MV474). In this study MV474 biofilm showed (i) a seven-fold higher growth rate, (ii) induction of catalase and alkyl-hydroxyl-peroxidase enzymes, (iii) higher average thicknesses due to increased production of a polysaccharide-rich extracellular matrix and (iv) less susceptibility to hydrogen peroxide than the wild-type strain (UW136). MV474 showed increased swimming and swarming activity and the swarming colonies experienced a higher level of oxidative stress compared to UW136. A continuous exogenous source of ROS increased biofilm formation in UW136. Overall, chronic sub-lethal oxidative events promoted sessile behavior in A. vinelandii.


Asunto(s)
Azotobacter vinelandii/fisiología , Biopelículas , Estrés Oxidativo , Movimiento Celular , Clorobenzoatos , Matriz Extracelular/metabolismo , Peróxido de Hidrógeno , Polisacáridos Bacterianos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
14.
Microorganisms ; 10(8)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36014056

RESUMEN

The first published observations that microorganisms associate to form microbial communities structured as biofilms in natural environments date back to the first half of the last century [...].

15.
Microorganisms ; 10(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35336113

RESUMEN

In Crohn's disease (CD) patients, the adherent-invasive Escherichia coli (AIEC) pathovar contributes to the chronic inflammation typical of the disease via its ability to invade gut epithelial cells and to survive in macrophages. We show that, in the AIEC strain LF82, inactivation of the pyrD gene, encoding dihydroorotate dehydrogenase (DHOD), an enzyme of the de novo pyrimidine biosynthetic pathway, completely abolished its ability of to grow in a macrophage environment-mimicking culture medium. In addition, pyrD inactivation reduced flagellar motility and strongly affected biofilm formation by downregulating transcription of both type 1 fimbriae and curli subunit genes. Thus, the pyrD gene appears to be essential for several cellular processes involved in AIEC virulence. Interestingly, vidofludimus (VF), a DHOD inhibitor, has been proposed as an effective drug in CD treatment. Despite displaying a potentially similar binding mode for both human and E. coli DHOD in computational molecular docking experiments, VF showed no activity on either growth or virulence-related processes in LF82. Altogether, our results suggest that the crucial role played by the pyrD gene in AIEC virulence, and the presence of structural differences between E. coli and human DHOD allowing for the design of specific inhibitors, make E. coli DHOD a promising target for therapeutical strategies aiming at counteracting chronic inflammation in CD by acting selectively on its bacterial triggers.

16.
Microorganisms ; 10(6)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35744681

RESUMEN

Staphylococcus epidermidis is an opportunistic pathogen and a frequent cause of nosocomial infections. In this work, we show that, among 51 S. epidermidis isolates from an Italian hospital, only a minority displayed biofilm formation, regardless of their isolation source (peripheral blood, catheter, or skin wounds); however, among the biofilm-producing isolates, those from catheters were the most efficient in biofilm formation. Interestingly, most isolates including strong biofilm producers displayed production levels of PIA (polysaccharide intercellular adhesin), the main S. epidermidis extracellular polysaccharide, similar to reference S. epidermidis strains classified as non-biofilm formers, and much lower than those classified as intermediate or high biofilm formers, possibly suggesting that high levels of PIA production do not confer a particular advantage for clinical isolates. Finally, while for the reference S. epidermidis strains the biofilm production clearly correlated with the decreased sensitivity to antibiotics, in particular, protein synthesis inhibitors, in our clinical isolates, such positive correlation was limited to tetracycline. In contrast, we observed an inverse correlation between biofilm formation and the minimal inhibitory concentrations for levofloxacin and teicoplanin. In addition, in growth conditions favoring PIA production, the biofilm-forming isolates showed increased sensitivity to daptomycin, clindamycin, and erythromycin, with increased tolerance to the trimethoprim/sulfamethoxazole association. The lack of direct correlation between the biofilm production and increased tolerance to antibiotics in S. epidermidis isolates from a clinical setting would suggest, at least for some antimicrobials, the possible existence of a trade-off between the production of biofilm determinants and antibiotic resistance.

17.
RSC Adv ; 12(26): 16640-16655, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35754877

RESUMEN

In the search for structurally novel metabolites with antibacterial activity, innovative approaches must be implemented to increase the probability of discovering novel chemistry from microbial sources. Here we report on the application of metabolomic tools to the genus Actinoallomurus, a poorly explored member of the Actinobacteria. From examining extracts derived from 88 isolates belonging to this genus, we identified a family of cyclodepsipeptides acylated with a C20 polyketide chain, which we named allopeptimicins. These molecules possess unusual structural features, including several double bonds in the amino-polyketide chain and four non-proteinogenic amino acids in the octapeptide. Remarkably, allopeptimicins are produced as a complex of active and inactive congeners, the latter carrying a sulfate group on the polyketide amine. This modification is also a mechanism of self-protection in the producer strain. The structural uniqueness of allopeptimicins is reflected in a biosynthetic gene cluster showing a mosaic structure, with dedicated gene cassettes devoted to formation of specialized precursors and modular assembly lines related to those from different pathways.

18.
Microorganisms ; 9(5)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34067197

RESUMEN

Escherichia coli C is a strong biofilm producer in comparison to E. coli K-12 laboratory strains due to higher expression of the pgaABCD operon encoding the enzymes for the biosynthesis of the extracellular polysaccharide poly-ß-1,6-N-acetylglucosamine (PNAG). The pgaABCD operon is negatively regulated at the post-transcriptional level by two factors, namely CsrA, a conserved RNA-binding protein controlling multiple pathways, and the RNA exonuclease polynucleotide phosphorylase (PNPase). In this work, we investigated the molecular bases of different PNAG production in C-1a and MG1655 strains taken as representative of E. coli C and K-12 strains, respectively. We found that pgaABCD operon expression is significantly lower in MG1655 than in C-1a; consistently, CsrA protein levels were much higher in MG1655. In contrast, we show that the negative effect exerted by PNPase on pgaABCD expression is much stronger in C-1a than in MG1655. The amount of CsrA and of the small RNAs CsrB, CsrC, and McaS sRNAs regulating CsrA activity is dramatically different in the two strains, whereas PNPase level is similar. Finally, the compensatory regulation acting between CsrB and CsrC in MG1655 does not occur in E. coli C. Our results suggest that PNPase preserves CsrA-dependent regulation by indirectly modulating csrA expression.

19.
J Bacteriol ; 192(23): 6136-42, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20889740

RESUMEN

Upon exposure to alkylating agents, Escherichia coli increases expression of aidB along with three genes (ada, alkA, and alkB) that encode DNA repair proteins. While the biological roles of the Ada, AlkA, and AlkB proteins have been defined, despite many efforts, the molecular functions of AidB remain largely unknown. In this study, we focused on the biological role of the AidB protein, and we demonstrated that AidB shows preferential binding to a DNA region that includes the upstream element of its own promoter, PaidB. The physiological significance of this specific interaction was investigated by in vivo gene expression assays, demonstrating that AidB can repress its own synthesis during normal cell growth. We also showed that the domain architecture of AidB is related to the different functions of the protein: the N-terminal region, comprising the first 439 amino acids (AidB "I-III"), possesses FAD-dependent dehydrogenase activity, while its C-terminal domain, corresponding to residues 440 to 541 (AidB "IV"), displays DNA binding activity and can negatively regulate the expression of its own gene in vivo. Our results define a novel role in gene regulation for the AidB protein and underline its multifunctional nature.


Asunto(s)
ADN Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Unión Proteica , Estructura Terciaria de Proteína , Elementos Reguladores de la Transcripción , Proteínas Represoras/metabolismo
20.
Microbiology (Reading) ; 156(Pt 10): 2901-2911, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20576684

RESUMEN

In Gram-negative bacteria, production of adhesion factors and extracellular polysaccharides (EPS) is promoted by the activity of diguanylate cyclases (DGCs), a class of enzymes able to catalyse the synthesis of the signal molecule bis-(3',5')-cyclic di-guanylic acid (c-di-GMP). In this report we show that in Escherichia coli, overexpression of the YddV protein, but not of other DGCs such as AdrA and YcdT, induces the production of the EPS poly-N-acetylglucosamine (PNAG) by stimulating expression of pgaABCD, the PNAG-biosynthetic operon. Stimulation of PNAG production and activation of pgaABCD expression by the YddV protein are abolished by inactivation of its GGDEF motif, responsible for DGC activity. Consistent with the effects of YddV overexpression, inactivation of the yddV gene negatively affects pgaABCD transcription and PNAG-mediated biofilm formation. pgaABCD regulation by the yddV gene also takes place in a mutant carrying a partial deletion of the csrA gene, which encodes the main regulator of pgaABCD expression, suggesting that YddV does not regulate pgaABCD through modulation of CsrA activity. Our results demonstrate that PNAG production does not simply respond to intracellular c-di-GMP concentration, but specifically requires the DGC activity of the YddV protein, thus supporting the notion that in E. coli, c-di-GMP biosynthesis by a given DGC protein triggers regulatory events that lead to activation of specific sets of EPS biosynthetic genes or proteins.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Operón , Liasas de Fósforo-Oxígeno/metabolismo , beta-Glucanos/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Liasas de Fósforo-Oxígeno/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA