Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Biol ; 21(10): e3002333, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37824452

RESUMEN

The ability to perform genomic sequencing on long-dead organisms is opening new frontiers in evolutionary research. These opportunities are especially notable in the case of museum collections, from which countless documented specimens may now be suitable for genomic analysis-if data of sufficient quality can be obtained. Here, we report 25 newly sequenced genomes from museum specimens of the model organism Drosophila melanogaster, including the oldest extant specimens of this species. By comparing historical samples ranging from the early 1800s to 1933 against modern-day genomes, we document evolution across thousands of generations, including time periods that encompass the species' initial occupation of northern Europe and an era of rapidly increasing human activity. We also find that the Lund, Sweden population underwent local genetic differentiation during the early 1800s to 1933 interval (potentially due to drift in a small population) but then became more similar to other European populations thereafter (potentially due to increased migration). Within each century-scale time period, our temporal sampling allows us to document compelling candidates for recent natural selection. In some cases, we gain insights regarding previously implicated selection candidates, such as ChKov1, for which our inferred timing of selection favors the hypothesis of antiviral resistance over insecticide resistance. Other candidates are novel, such as the circadian-related gene Ahcy, which yields a selection signal that rivals that of the DDT resistance gene Cyp6g1. These insights deepen our understanding of recent evolution in a model system, and highlight the potential of future museomic studies.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Humanos , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Resistencia a los Insecticidas/genética , Genoma de los Insectos/genética , Demografía
2.
Mol Biol Evol ; 39(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-34971382

RESUMEN

Population genetics seeks to illuminate the forces shaping genetic variation, often based on a single snapshot of genomic variation. However, utilizing multiple sampling times to study changes in allele frequencies can help clarify the relative roles of neutral and non-neutral forces on short time scales. This study compares whole-genome sequence variation of recently collected natural population samples of Drosophila melanogaster against a collection made approximately 35 years prior from the same locality-encompassing roughly 500 generations of evolution. The allele frequency changes between these time points would suggest a relatively small local effective population size on the order of 10,000, significantly smaller than the global effective population size of the species. Some loci display stronger allele frequency changes than would be expected anywhere in the genome under neutrality-most notably the tandem paralogs Cyp6a17 and Cyp6a23, which are impacted by structural variation associated with resistance to pyrethroid insecticides. We find a genome-wide excess of outliers for high genetic differentiation between old and new samples, but a larger number of adaptation targets may have affected SNP-level differentiation versus window differentiation. We also find evidence for strengthening latitudinal allele frequency clines: northern-associated alleles have increased in frequency by an average of nearly 2.5% at SNPs previously identified as clinal outliers, but no such pattern is observed at random SNPs. This project underscores the scientific potential of using multiple sampling time points to investigate how evolution operates in natural populations, by quantifying how genetic variation has changed over ecologically relevant timescales.


Asunto(s)
Drosophila melanogaster , Drosophila , Alelos , Animales , Drosophila/genética , Drosophila melanogaster/genética , Evolución Molecular , Frecuencia de los Genes , Variación Genética , Genética de Población , Metagenómica , Selección Genética
3.
Mol Biol Evol ; 37(3): 627-638, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31730190

RESUMEN

A long-standing enigma concerns the geographic and ecological origins of the intensively studied vinegar fly, Drosophila melanogaster. This globally distributed human commensal is thought to originate from sub-Saharan Africa, yet until recently, it had never been reported from undisturbed wilderness environments that could reflect its precommensal niche. Here, we document the collection of 288 D. melanogaster individuals from multiple African wilderness areas in Zambia, Zimbabwe, and Namibia. The presence of D. melanogaster in these remote woodland environments is consistent with an ancestral range in southern-central Africa, as opposed to equatorial regions. After sequencing the genomes of 17 wilderness-collected flies collected from Kafue National Park in Zambia, we found reduced genetic diversity relative to town populations, elevated chromosomal inversion frequencies, and strong differences at specific genes including known insecticide targets. Combining these genomes with existing data, we probed the history of this species' geographic expansion. Demographic estimates indicated that expansion from southern-central Africa began ∼10,000 years ago, with a Saharan crossing soon after, but expansion from the Middle East into Europe did not begin until roughly 1,400 years ago. This improved model of demographic history will provide an important resource for future evolutionary and genomic studies of this key model organism. Our findings add context to the history of D. melanogaster, while opening the door for future studies on the biological basis of adaptation to human environments.


Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Secuenciación Completa del Genoma/veterinaria , Animales , Bases de Datos Genéticas , Europa (Continente) , Femenino , Especiación Genética , Variación Genética , Genética de Población , Genoma de los Insectos , Masculino , Medio Oriente , Namibia , Filogeografía , Dinámica Poblacional , Vida Silvestre , Zambia , Zimbabwe
4.
Mol Biol Evol ; 33(12): 3308-3313, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27687565

RESUMEN

The Drosophila Genome Nexus is a population genomic resource that provides D. melanogaster genomes from multiple sources. To facilitate comparisons across data sets, genomes are aligned using a common reference alignment pipeline which involves two rounds of mapping. Regions of residual heterozygosity, identity-by-descent, and recent population admixture are annotated to enable data filtering based on the user's needs. Here, we present a significant expansion of the Drosophila Genome Nexus, which brings the current data object to a total of 1,121 wild-derived genomes. New additions include 305 previously unpublished genomes from inbred lines representing six population samples in Egypt, Ethiopia, France, and South Africa, along with another 193 genomes added from recently-published data sets. We also provide an aligned D. simulans genome to facilitate divergence comparisons. This improved resource will broaden the range of population genomic questions that can addressed from multi-population allele frequencies and haplotypes in this model species. The larger set of genomes will also enhance the discovery of functionally relevant natural variation that exists within and between populations.


Asunto(s)
Drosophila melanogaster/genética , Genoma de los Insectos , Animales , Bases de Datos de Ácidos Nucleicos , Frecuencia de los Genes , Variación Genética , Estándares de Referencia , Selección Genética
6.
Mol Ecol ; 25(13): 3081-100, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27135633

RESUMEN

Identifying genomic targets of population-specific positive selection is a major goal in several areas of basic and applied biology. However, it is unclear how often such selection should act on new mutations versus standing genetic variation or recurrent mutation, and furthermore, favoured alleles may either become fixed or remain variable in the population. Very few population genetic statistics are sensitive to all of these modes of selection. Here, we introduce and evaluate the Comparative Haplotype Identity statistic (χMD ), which assesses whether pairwise haplotype sharing at a locus in one population is unusually large compared with another population, relative to genomewide trends. Using simulations that emulate human and Drosophila genetic variation, we find that χMD is sensitive to a wide range of selection scenarios, and for some very challenging cases (e.g. partial soft sweeps), it outperforms other two-population statistics. We also find that, as with FST , our haplotype approach has the ability to detect surprisingly ancient selective sweeps. Particularly for the scenarios resembling human variation, we find that χMD outperforms other frequency- and haplotype-based statistics for soft and/or partial selective sweeps. Applying χMD and other between-population statistics to published population genomic data from D. melanogaster, we find both shared and unique genes and functional categories identified by each statistic. The broad utility and computational simplicity of χMD will make it an especially valuable tool in the search for genes targeted by local adaptation.


Asunto(s)
Adaptación Biológica/genética , Variación Genética , Genética de Población/métodos , Haplotipos , Selección Genética , Animales , Simulación por Computador , Drosophila melanogaster/genética , Frecuencia de los Genes , Genoma de los Insectos , Humanos , Modelos Genéticos , Modelos Estadísticos , Mutación
7.
CRISPR J ; 7(1): 12-28, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38353617

RESUMEN

Disease resistance genes in livestock provide health benefits to animals and opportunities for farmers to meet the growing demand for affordable, high-quality protein. Previously, researchers used gene editing to modify the porcine CD163 gene and demonstrated resistance to a harmful virus that causes porcine reproductive and respiratory syndrome (PRRS). To maximize potential benefits, this disease resistance trait needs to be present in commercially relevant breeding populations for multiplication and distribution of pigs. Toward this goal, a first-of-its-kind, scaled gene editing program was established to introduce a single modified CD163 allele into four genetically diverse, elite porcine lines. This effort produced healthy pigs that resisted PRRS virus infection as determined by macrophage and animal challenges. This founder population will be used for additional disease and trait testing, multiplication, and commercial distribution upon regulatory approval. Applying CRISPR-Cas to eliminate a viral disease represents a major step toward improving animal health.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Animales , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Síndrome Respiratorio y de la Reproducción Porcina/genética , Sistemas CRISPR-Cas/genética , Resistencia a la Enfermedad/genética , Edición Génica , Ganado
8.
Genome Biol Evol ; 10(8): 1882-1891, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30010915

RESUMEN

In species with large population sizes such as Drosophila, natural selection may have substantial effects on genetic diversity and divergence. However, the implications of this widespread nonneutrality for standard population genetic assumptions and practices remain poorly resolved. Here, we assess the consequences of recurrent hitchhiking (RHH), in which selective sweeps occur at a given rate randomly across the genome. We use forward simulations to examine two published RHH models for D. melanogaster, reflecting relatively common/weak and rare/strong selection. We find that unlike the rare/strong RHH model, the common/weak model entails a slight degree of Hill-Robertson interference in high recombination regions. We also find that the common/weak RHH model is more consistent with our genome-wide estimate of the proportion of substitutions fixed by natural selection between D. melanogaster and D. simulans (19%). Finally, we examine how these models of RHH might bias demographic inference. We find that these RHH scenarios can bias demographic parameter estimation, but such biases are weaker for parameters relating recently diverged populations, and for the common/weak RHH model in general. Thus, even for species with important genome-wide impacts of selective sweeps, neutralist demographic inference can have some utility in understanding the histories of recently diverged populations.


Asunto(s)
Drosophila melanogaster/genética , Variación Genética , Selección Genética , Animales , Simulación por Computador , Demografía , Modelos Genéticos , Densidad de Población
9.
Genetics ; 204(3): 1307-1319, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27638419

RESUMEN

Unraveling the genetic architecture of adaptive phenotypic divergence is a fundamental quest in evolutionary biology. In Drosophila melanogaster, high-altitude melanism has evolved in separate mountain ranges in sub-Saharan Africa, potentially as an adaptation to UV intensity. We investigated the genetic basis of this melanism in three populations using a new bulk segregant analysis mapping method. We identified 19 distinct QTL regions from nine mapping crosses, with several QTL peaks overlapping between two or all populations, and yet different crosses involving the same melanic population commonly yielded distinct QTL. The strongest QTL often overlapped well-known pigmentation genes, but we typically did not find wide signals of genetic differentiation (FST) between lightly and darkly pigmented populations at these genes. Instead, we found small numbers of highly differentiated SNPs at the probable causative genes. A simulation analysis showed that these patterns of polymorphism were consistent with selection on standing genetic variation. Overall, our results suggest that, even for potentially simpler traits like pigmentation, the complexity of adaptive trait evolution poses important challenges for QTL mapping and population genetic analysis.


Asunto(s)
Drosophila melanogaster/genética , Evolución Molecular , Melaninas/genética , Animales , Melaninas/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Pigmentación de la Piel/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA