Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Methods ; 21(7): 1196-1205, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38871986

RESUMEN

Single-cell RNA sequencing allows us to model cellular state dynamics and fate decisions using expression similarity or RNA velocity to reconstruct state-change trajectories; however, trajectory inference does not incorporate valuable time point information or utilize additional modalities, whereas methods that address these different data views cannot be combined or do not scale. Here we present CellRank 2, a versatile and scalable framework to study cellular fate using multiview single-cell data of up to millions of cells in a unified fashion. CellRank 2 consistently recovers terminal states and fate probabilities across data modalities in human hematopoiesis and endodermal development. Our framework also allows combining transitions within and across experimental time points, a feature we use to recover genes promoting medullary thymic epithelial cell formation during pharyngeal endoderm development. Moreover, we enable estimating cell-specific transcription and degradation rates from metabolic-labeling data, which we apply to an intestinal organoid system to delineate differentiation trajectories and pinpoint regulatory strategies.


Asunto(s)
Diferenciación Celular , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Endodermo/citología , Endodermo/metabolismo , Hematopoyesis , Linaje de la Célula , Análisis de Secuencia de ARN/métodos , Organoides/metabolismo , Organoides/citología
2.
Nat Methods ; 19(2): 159-170, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35027767

RESUMEN

Computational trajectory inference enables the reconstruction of cell state dynamics from single-cell RNA sequencing experiments. However, trajectory inference requires that the direction of a biological process is known, largely limiting its application to differentiating systems in normal development. Here, we present CellRank ( https://cellrank.org ) for single-cell fate mapping in diverse scenarios, including regeneration, reprogramming and disease, for which direction is unknown. Our approach combines the robustness of trajectory inference with directional information from RNA velocity, taking into account the gradual and stochastic nature of cellular fate decisions, as well as uncertainty in velocity vectors. On pancreas development data, CellRank automatically detects initial, intermediate and terminal populations, predicts fate potentials and visualizes continuous gene expression trends along individual lineages. Applied to lineage-traced cellular reprogramming data, predicted fate probabilities correctly recover reprogramming outcomes. CellRank also predicts a new dedifferentiation trajectory during postinjury lung regeneration, including previously unknown intermediate cell states, which we confirm experimentally.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Páncreas Exocrino/citología , Análisis de la Célula Individual/métodos , Programas Informáticos , Animales , Diferenciación Celular/genética , Linaje de la Célula , Reprogramación Celular , Humanos , Pulmón/citología , ARN , Regeneración
3.
Nature ; 571(7765): 419-423, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31292545

RESUMEN

Single-cell RNA sequencing (scRNA-seq) has highlighted the important role of intercellular heterogeneity in phenotype variability in both health and disease1. However, current scRNA-seq approaches provide only a snapshot of gene expression and convey little information on the true temporal dynamics and stochastic nature of transcription. A further key limitation of scRNA-seq analysis is that the RNA profile of each individual cell can be analysed only once. Here we introduce single-cell, thiol-(SH)-linked alkylation of RNA for metabolic labelling sequencing (scSLAM-seq), which integrates metabolic RNA labelling2, biochemical nucleoside conversion3 and scRNA-seq to record transcriptional activity directly by differentiating between new and old RNA for thousands of genes per single cell. We use scSLAM-seq to study the onset of infection with lytic cytomegalovirus in single mouse fibroblasts. The cell-cycle state and dose of infection deduced from old RNA enable dose-response analysis based on new RNA. scSLAM-seq thereby both visualizes and explains differences in transcriptional activity at the single-cell level. Furthermore, it depicts 'on-off' switches and transcriptional burst kinetics in host gene expression with extensive gene-specific differences that correlate with promoter-intrinsic features (TBP-TATA-box interactions and DNA methylation). Thus, gene-specific, and not cell-specific, features explain the heterogeneity in transcriptomes between individual cells and the transcriptional response to perturbations.


Asunto(s)
Regulación de la Expresión Génica/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual , Transcripción Genética/genética , Alquilación , Animales , Ciclo Celular , Citomegalovirus/fisiología , Metilación de ADN , Fibroblastos/metabolismo , Fibroblastos/virología , Cinética , Ratones , Regiones Promotoras Genéticas/genética , ARN/análisis , ARN/química , Compuestos de Sulfhidrilo/química
4.
Development ; 146(12)2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31249007

RESUMEN

Single cell genomics has become a popular approach to uncover the cellular heterogeneity of progenitor and terminally differentiated cell types with great precision. This approach can also delineate lineage hierarchies and identify molecular programmes of cell-fate acquisition and segregation. Nowadays, tens of thousands of cells are routinely sequenced in single cell-based methods and even more are expected to be analysed in the future. However, interpretation of the resulting data is challenging and requires computational models at multiple levels of abstraction. In contrast to other applications of single cell sequencing, where clustering approaches dominate, developmental systems are generally modelled using continuous structures, trajectories and trees. These trajectory models carry the promise of elucidating mechanisms of development, disease and stimulation response at very high molecular resolution. However, their reliable analysis and biological interpretation requires an understanding of their underlying assumptions and limitations. Here, we review the basic concepts of such computational approaches and discuss the characteristics of developmental processes that can be learnt from trajectory models.


Asunto(s)
Genómica/métodos , Análisis de la Célula Individual/métodos , Algoritmos , Animales , Diferenciación Celular , Linaje de la Célula , Proliferación Celular , Cromatina/química , Biología Computacional/métodos , Biología Evolutiva/tendencias , Humanos , Metilación , Ratones , Modelos Biológicos , Dinámicas no Lineales , Proteómica , ARN/química , Empalme del ARN , Análisis de Secuencia de ARN , Programas Informáticos , Células Madre/citología
5.
Nat Biotechnol ; 38(12): 1408-1414, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32747759

RESUMEN

RNA velocity has opened up new ways of studying cellular differentiation in single-cell RNA-sequencing data. It describes the rate of gene expression change for an individual gene at a given time point based on the ratio of its spliced and unspliced messenger RNA (mRNA). However, errors in velocity estimates arise if the central assumptions of a common splicing rate and the observation of the full splicing dynamics with steady-state mRNA levels are violated. Here we present scVelo, a method that overcomes these limitations by solving the full transcriptional dynamics of splicing kinetics using a likelihood-based dynamical model. This generalizes RNA velocity to systems with transient cell states, which are common in development and in response to perturbations. We apply scVelo to disentangling subpopulation kinetics in neurogenesis and pancreatic endocrinogenesis. We infer gene-specific rates of transcription, splicing and degradation, recover each cell's position in the underlying differentiation processes and detect putative driver genes. scVelo will facilitate the study of lineage decisions and gene regulation.


Asunto(s)
Modelos Genéticos , ARN/genética , Animales , Ciclo Celular , Linaje de la Célula , Giro Dentado/metabolismo , Sistema Endocrino/metabolismo , Humanos , Cinética , Ratones , Neurogénesis/genética , Empalme del ARN/genética , Análisis de la Célula Individual , Células Madre/metabolismo , Procesos Estocásticos , Transcripción Genética
6.
Nat Commun ; 11(1): 3559, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678092

RESUMEN

The cell type specific sequences of transcriptional programs during lung regeneration have remained elusive. Using time-series single cell RNA-seq of the bleomycin lung injury model, we resolved transcriptional dynamics for 28 cell types. Trajectory modeling together with lineage tracing revealed that airway and alveolar stem cells converge on a unique Krt8 + transitional stem cell state during alveolar regeneration. These cells have squamous morphology, feature p53 and NFkB activation and display transcriptional features of cellular senescence. The Krt8+ state appears in several independent models of lung injury and persists in human lung fibrosis, creating a distinct cell-cell communication network with mesenchyme and macrophages during repair. We generated a model of gene regulatory programs leading to Krt8+ transitional cells and their terminal differentiation to alveolar type-1 cells. We propose that in lung fibrosis, perturbed molecular checkpoints on the way to terminal differentiation can cause aberrant persistence of regenerative intermediate stem cell states.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Queratina-8/metabolismo , Alveolos Pulmonares/fisiología , Fibrosis Pulmonar/patología , Regeneración , Células Madre/metabolismo , Células Epiteliales Alveolares/citología , Animales , Comunicación Celular , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Queratina-8/genética , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Ratones , Ratones Endogámicos C57BL , Alveolos Pulmonares/citología , Fibrosis Pulmonar/metabolismo , Análisis de la Célula Individual , Células Madre/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA