Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
iScience ; 27(5): 109726, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38646180

RESUMEN

[This corrects the article DOI: 10.1016/j.isci.2022.105744.].

2.
iScience ; 26(1): 105744, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36582819

RESUMEN

The culinary value, quality, and safety of cheese are largely driven by the resident bacteria, but comparative analyses of the cheese microbiota across cheese types are scarce. We present the first global synthesis of cheese microbiomes. Following a systematic literature review of cheese microbiology research, we collected 16S rRNA gene amplicon sequence data from 824 cheese samples spanning 58 cheese types and 16 countries. We found a consistent, positive relationship between microbiome richness and pH, and a higher microbial richness in cheeses derived from goat milk. In contrast, we found no relationship between pasteurization, geographic location, or salinity and richness. Milk and cheese type, geographic location, and pasteurization collectively explained 65% of the variation in microbial community composition. Importantly, we identified four universal cheese microbiome types, driven by distinct dominant taxa. Our study reveals notable diversity patterns among the cheese microbiota, which are driven by geography and local environmental variables.

3.
Bioinform Adv ; 3(1): vbad134, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046099

RESUMEN

Summary: Protein structures carry signal of common ancestry and can therefore aid in reconstructing their evolutionary histories. To expedite the structure-informed inference process, a web server, Structome, has been developed that allows users to rapidly identify protein structures similar to a query protein and to assemble datasets useful for structure-based phylogenetics. Structome was created by clustering ∼94% of the structures in RCSB PDB using 90% sequence identity and representing each cluster by a centroid structure. Structure similarity between centroid proteins was calculated, and annotations from PDB, SCOP, and CATH were integrated. To illustrate utility, an H3 histone was used as a query, and results show that the protein structures returned by Structome span both sequence and structural diversity of the histone fold. Additionally, the pre-computed nexus-formatted distance matrix, provided by Structome, enables analysis of evolutionary relationships between proteins not identifiable using searches based on sequence similarity alone. Our results demonstrate that, beginning with a single structure, Structome can be used to rapidly generate a dataset of structural neighbours and allows deep evolutionary history of proteins to be studied. Availability and Implementation: Structome is available at: https://structome.bii.a-star.edu.sg.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA