Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Hyg Environ Health ; 262: 114431, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39096579

RESUMEN

BACKGROUND: Short-term exposure to low and high air temperatures can cause serious harmful effects on human health. Existing literature has mostly focused on associations of ambient air temperature with mortality and the need for health care in population-level studies. Studies that have considered self-perceived health status as an outcome when examining the effects of air temperature on health are scarce. In this study, we explored the short-term association of daily mean air temperature with various measures of self-perceived health status. METHODS: This cross-sectional analysis is based on the Cooperative Health Research in the Region of Augsburg (KORA) FIT study conducted in 2018/2019 and included participants from the Augsburg region of Southern Germany. Health-related quality of life (HRQOL) was evaluated by using the 5-level EuroQol Five Dimension (EQ-5D-5L) questionnaire, including the EuroQol visual analog scale (EQ-VAS). Self-rated health (SRH) and comparative self-rated health (CSRH) were each assessed using a single question. Daily mean air temperature data was estimated using a spatiotemporal model and assigned to participants' home addresses at a resolution of 1 × 1 km. Regression models with a Distributed Lag Non-linear Modeling (DLNM) approach were used to investigate the associations between daily mean air temperature and self-perceived health measures. RESULTS: We found no association of heat or cold with the HRQOL, SRH or CSRH. Nevertheless, there was a significant protective association of low air temperature with the EQ-5D-5L dimension "usual activities." CONCLUSION: There was no evidence of daily mean air temperature adversely affecting participants' self-perceived health status.

2.
Redox Biol ; 69: 102995, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38142584

RESUMEN

Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.


Asunto(s)
Isquemia Miocárdica , Ruido del Transporte , Animales , Humanos , Ruido del Transporte/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Estudios de Cohortes , Oxidación-Reducción
3.
Environ Epidemiol ; 8(4): e319, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38983882

RESUMEN

Background: Available evidence suggests a link between exposure to transportation noise and an increased risk of obesity. We aimed to assess exposure-response functions for long-term residential exposure to road traffic, railway and aircraft noise, and markers of obesity. Methods: Our cross-sectional study is based on pooled data from 11 Nordic cohorts, including up to 162,639 individuals with either measured (69.2%) or self-reported obesity data. Residential exposure to transportation noise was estimated as a time-weighted average Lden 5 years before recruitment. Adjusted linear and logistic regression models were fitted to assess beta coefficients and odds ratios (OR) with 95% confidence intervals (CI) for body mass index, overweight, and obesity, as well as for waist circumference and central obesity. Furthermore, natural splines were fitted to assess the shape of the exposure-response functions. Results: For road traffic noise, the OR for obesity was 1.06 (95% CI = 1.03, 1.08) and for central obesity 1.03 (95% CI = 1.01, 1.05) per 10 dB Lden. Thresholds were observed at around 50-55 and 55-60 dB Lden, respectively, above which there was an approximate 10% risk increase per 10 dB Lden increment for both outcomes. However, linear associations only occurred in participants with measured obesity markers and were strongly influenced by the largest cohort. Similar risk estimates as for road traffic noise were found for railway noise, with no clear thresholds. For aircraft noise, results were uncertain due to the low number of exposed participants. Conclusion: Our results support an association between road traffic and railway noise and obesity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA