Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Mem Inst Oswaldo Cruz ; 118: e220287, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37018799

RESUMEN

Mental disorders such as anxiety, depression, and memory loss have been described in patients with chronic Chagas disease (CD), a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Social, psychological, and biological stressors may take part in these processes. There is a consensus on the recognition of an acute nervous form of CD. In chronic CD patients, a neurological form is associated with immunosuppression and neurobehavioural changes as sequelae of stroke. The chronic nervous form of CD has been refuted, based on the absence of histopathological lesions and neuroinflammation; however, computed tomography shows brain atrophy. Overall, in preclinical models of chronic T. cruzi infection in the absence of neuroinflammation, behavioural disorders such as anxiety and depression, and memory loss are related to brain atrophy, parasite persistence, oxidative stress, and cytokine production in the central nervous system. Interferon-gamma (IFNγ)-bearing microglial cells are colocalised with astrocytes carrying T. cruzi amastigote forms. In vitro studies suggest that IFNγ fuels astrocyte infection by T. cruzi and implicate IFNγ-stimulated infected astrocytes as sources of TNF and nitric oxide, which may also contribute to parasite persistence in the brain tissue and promote behavioural and neurocognitive changes. Preclinical trials in chronically infected mice targeting the TNF pathway or the parasite opened paths for therapeutic approaches with a beneficial impact on depression and memory loss. Despite the path taken, replicating aspects of the chronic CD and testing therapeutic schemes in preclinical models, these findings may get lost in translation as the chronic nervous form of CD does not fulfil biomedical model requirements, as the presence of neuroinflammation, to be recognised. It is hoped that brain atrophy and behavioural and neurocognitive changes are sufficient traits to bring the attention of researchers to study the biological and molecular basis of the central nervous system commitment in chronic CD.


Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Ratones , Animales , Enfermedades Neuroinflamatorias , Depresión , Enfermedad de Chagas/parasitología , Interferón gamma , Ansiedad , Trastornos de la Memoria
2.
Antimicrob Agents Chemother ; 66(11): e0028422, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36314800

RESUMEN

Drug combinations and drug repurposing have emerged as promising strategies to develop novel treatments for infectious diseases, including Chagas disease. In this study, we aimed to investigate whether the repurposed drugs chloroquine (CQ) and colchicine (COL), known to inhibit Trypanosoma cruzi infection in host cells, could boost the anti-T. cruzi effect of the trypanocidal drug benznidazole (BZN), increasing its therapeutic efficacy while reducing the dose needed to eradicate the parasite. The combination of BZN and COL exhibited cytotoxicity to infected cells and low antiparasitic activity. Conversely, a combination of BZN and CQ significantly reduced T. cruzi infection in vitro, with no apparent cytotoxicity. This effect seemed to be consistent across different cell lines and against both the partially BZN-resistant Y and the highly BZN-resistant Colombiana strains. In vivo experiments in an acute murine model showed that the BZN+CQ combination was eight times more effective in reducing T. cruzi infection in the acute phase than BZN monotherapy. In summary, our results demonstrate that the concomitant administration of CQ and BZN potentiates the trypanocidal activity of BZN, leading to a reduction in the dose needed to achieve an effective response. In a translational context, it could represent a higher efficacy of treatment while also mitigating the adverse effects of high doses of BZN. Our study also reinforces the relevance of drug combination and repurposing approaches in the field of Chagas disease drug discovery.


Asunto(s)
Enfermedad de Chagas , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Ratones , Animales , Reposicionamiento de Medicamentos , Cloroquina/farmacología , Cloroquina/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Nitroimidazoles/farmacología , Nitroimidazoles/uso terapéutico , Tripanocidas/farmacología , Tripanocidas/uso terapéutico
3.
Mem Inst Oswaldo Cruz ; 117: e220019, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35320825

RESUMEN

Chagas disease (CD), caused by infection by the protozoan parasite Trypanosoma cruzi, presents as main clinical manifestation the chronic chagasic cardiomyopathy (CCC). CCC afflicts millions of people, mostly in Latin America, and vaccine and effective therapy are still lacking. Comprehension of the host/parasite interplay in the chronic phase of T. cruzi infection may unveil targets for rational trait-based therapies to improve CCC prognosis. In the present viewpoint, I critically summarise a collection of data, obtained by our network of collaborators and other groups on CCC and preclinical studies on pathogenesis, targeting identification for intervention and the use of drugs with immunomodulatory properties to improve CCC. In the last two decades, models combining mouse lineages and T. cruzi strains allowed replication of crucial clinical, histopathological, and immunological traits of CCC. This condition includes conduction changes (heart rate changes, arrhythmias, atrioventricular blocks, prolongation of the QRS complex and PR and corrected QT intervals), ventricular dysfunction and heart failure, CD8-enriched myocarditis, tissue remodeling and progressive fibrosis, and systemic inflammatory profile, resembling "cytokine storm". Studies on Chagas' heart disease pathogenesis begins to unveil the molecular mechanisms underpinning the inflammation-related cardiac tissue damage, placing IFNγ, TNF and NFκB signaling as upstream regulators of miRNAs and mRNAs associated with critical biological pathways as cell migration, inflammation, tissue remodeling and fibrosis, and mitochondrial dysfunction. Further, data on preclinical trials using hypothesis-based tools, targeting parasite and inflammation-related alterations, opened paths for multi-therapeutic approaches in CCC. Despite the long path taken using experimental CD models replicating relevant aspects of CCC and testing new therapies and therapeutic schemes, these findings may get lost in translation, as conceptual and economical challenges, underpinning the valley of death across preclinical and clinical trials. It is hoped that such difficulties will be overcome in the near future.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Chagásica , Enfermedad de Chagas , Parásitos , Animales , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/metabolismo , Humanos , Inflamación , Ratones , Pronóstico
4.
Mem Inst Oswaldo Cruz ; 117: e220005, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36417626

RESUMEN

BACKGROUND: Angiogenesis has been implicated in tissue injury in several noninfectious diseases, but its role in Chagas disease (CD) physiopathology is unclear. OBJECTIVES: The present study aimed to investigate the effect of Trypanosoma cruzi infection on cardiac angiogenesis during the acute phase of experimental CD. METHODS: The signalling pathway involved in blood vessel formation and cardiac remodelling was evaluated in Swiss Webster mice infected with the Y strain of T. cruzi. The levels of molecules involved in the regulation of angiogenesis, such as vascular endothelial growth factor-A (VEGF-A), Flk-1, phosphorylated extracellular-signal-regulated protein kinase (pERK), hypoxia-inducible factor-1α (HIF-1α), CD31, α-smooth muscle actin (α-SMA) and also the blood vessel growth were analysed during T. cruzi infection. Hearts were analysed using conventional histopathology, immunohistochemistry and western blotting. FINDINGS: In this study, our data demonstrate that T. cruzi acute infection in mice induces exacerbated angiogenesis in the heart and parallels cardiac remodelling. In comparison with noninfected controls, the cardiac tissue of T. cruzi-infected mice presented higher levels of (i) HIF-1α, VEGF-A, Flk-1 and pERK; (ii) angiogenesis; (iii) α-SMA+ cells in the tissue; and (iv) collagen -1 deposition around blood vessels and infiltrating throughout the myocardium. MAIN CONCLUSIONS: We observed cardiac angiogenesis during acute experimental T. cruzi infection parallels cardiac inflammation and remodelling.


Asunto(s)
Enfermedad de Chagas , Factor A de Crecimiento Endotelial Vascular , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Remodelación Ventricular , Enfermedad de Chagas/metabolismo , Corazón , Miocardio/patología
5.
PLoS Pathog ; 12(10): e1005947, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27788262

RESUMEN

Chronic chagasic cardiomyopathy (CCC) develops years after acute infection by Trypanosoma cruzi and does not improve after trypanocidal therapy, despite reduction of parasite burden. During disease, the heart undergoes oxidative stress, a potential causative factor for arrhythmias and contractile dysfunction. Here we tested whether antioxidants/ cardioprotective drugs could improve cardiac function in established Chagas heart disease. We chose a model that resembles B1-B2 stage of human CCC, treated mice with resveratrol and performed electrocardiography and echocardiography studies. Resveratrol reduced the prolonged PR and QTc intervals, increased heart rates and reversed sinus arrhythmia, atrial and atrioventricular conduction disorders; restored a normal left ventricular ejection fraction, improved stroke volume and cardiac output. Resveratrol activated the AMPK-pathway and reduced both ROS production and heart parasite burden, without interfering with vascularization or myocarditis intensity. Resveratrol was even capable of improving heart function of infected mice when treatment was started late after infection, while trypanocidal drug benznidazole failed. We attempted to mimic resveratrol's actions using metformin (AMPK-activator) or tempol (SOD-mimetic). Metformin and tempol mimicked the beneficial effects of resveratrol on heart function and decreased lipid peroxidation, but did not alter parasite burden. These results indicate that AMPK activation and ROS neutralization are key strategies to induce tolerance to Chagas heart disease. Despite all tissue damage observed in established Chagas heart disease, we found that a physiological dysfunction can still be reversed by treatment with resveratrol, metformin and tempol, resulting in improved heart function and representing a starting point to develop innovative therapies in CCC.


Asunto(s)
Antioxidantes/farmacología , Cardiomiopatía Chagásica/patología , Estilbenos/farmacología , Animales , Óxidos N-Cíclicos/farmacología , Modelos Animales de Enfermedad , Femenino , Masculino , Metformina/farmacología , Ratones , Ratones Endogámicos BALB C , Estrés Oxidativo/efectos de los fármacos , Resveratrol , Marcadores de Spin
6.
Mem Inst Oswaldo Cruz ; 113(6): e170489, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29768622

RESUMEN

BACKGROUND: The severity of chronic chagasic cardiomyopathy (CCC), the most frequent clinical outcome of Chagas disease (CD), has been associated with cytokine-enriched heart tissue inflammation, and high serum levels of transforming growth factor (TGFß), interferon-gamma (IFNγ), and tumour necrosis factor (TNF). Conversely, increased interleukin (IL)-10 serum concentrations have been associated with asymptomatic CD. Cytokines and cytokine-related gene polymorphisms may control cytokine expression and have been proposed to contribute to CCC outcomes. OBJECTIVES: We evaluated the association of 13 cytokine-related genes (TGFB: rs8179181, rs8105161, rs1800469; IL10: rs1800890, rs1800871, rs1800896; IFNG: rs2430561; TNF: rs1800629; BAT1: rs3853601; LTA: rs909253, rs2239704; TNFR1: rs767455; TNFR2: rs1061624) with risk and progression of CCC. FINDINGS: Four hundred and six seropositive patients from CD endemic areas in the state of Pernambuco, north-eastern Brazil, were classified as non-cardiopathic (A, 110) or cardiopathic (mild, B1, 163; severe, C, 133). We found no evidence of TGFB, IL10, TNF, or TNFR1/2 gene polymorphisms associated with CCC risk or progression. Only BAT1 rs3853601 -22G carriers (B1 vs. C: OR = 0.5; p-value = 0.03) and IFNG rs2430561 +874AT (A vs. C: OR = 0.7; p-value = 0.03; A vs. B1+C: OR = 0.8; p-value = 0.02) showed a significant association with protection from cardiopathy in a logistic regression analysis with adjustment for gender and ethnicity; however, the association disappeared after performing adjustment for multiple testing. A systematic review of TNF rs1800629 -308G>A publications included five studies for meta-analysis (534 CCC and 472 asymptomatic patients) and showed no consensus in pooled odds ratio (OR) estimates for A allele or A carriers (OR = 1.4 and 1.5; p-values = 0.14 and 0.15, respectively). In CD patients, TNF serum levels were increased, but not affected by the TNF rs1800629 -308A allele. MAIN CONCLUSIONS: Our data suggest no significant contribution of the analysed gene variants of cytokine-related molecules to development/severity of Chagas' heart disease, reinforcing the idea that parasite/host interplay is critical to CD outcomes.


Asunto(s)
Cardiomiopatía Chagásica/genética , Citocinas/genética , Polimorfismo de Nucleótido Simple/genética , Brasil , Estudios de Casos y Controles , Cardiomiopatía Chagásica/complicaciones , Cardiomiopatía Chagásica/inmunología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Interferón gamma/genética , Masculino , Persona de Mediana Edad , Pronóstico , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Índice de Severidad de la Enfermedad , Factores Socioeconómicos , Factor de Crecimiento Transformador beta/genética , Factor de Necrosis Tumoral alfa/genética
7.
J Neuroinflammation ; 14(1): 182, 2017 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-28877735

RESUMEN

BACKGROUND: In conditions of immunosuppression, the central nervous sty 5ystem (CNS) is the main target tissue for the reactivation of infection by Trypanosoma cruzi, the causative agent of Chagas disease. In experimental T. cruzi infection, interferon gamma (IFNγ)+ microglial cells surround astrocytes harboring amastigote parasites. In vitro, IFNγ fuels astrocyte infection by T. cruzi, and IFNγ-stimulated infected astrocytes are implicated as potential sources of tumor necrosis factor (TNF). Pro-inflammatory cytokines trigger behavioral alterations. In T. cruzi-infected mice, administration of anti-TNF antibody hampers depressive-like behavior. Herein, we investigated the effects of TNF on astrocyte susceptibility to T. cruzi infection and the regulation of cytokine production. METHODS: Primary astrocyte cultures of neonatal C57BL/6 and C3H/He mice and the human U-87 MG astrocyte lineage were infected with the Colombian T. cruzi strain. Cytokine production, particularly TNF, and TNF receptor 1 (TNFR1/p55) expression were analyzed. Recombinant cytokines (rIFNγ and rTNF), the anti-TNF antibody infliximab, and the TNFR1 modulator pentoxifylline were used to assess the in vitro effects of TNF on astrocyte susceptibility to T. cruzi infection. To investigate the role of TNF on CNS colonization by T. cruzi, infected mice were submitted to anti-TNF therapy. RESULTS: rTNF priming of mouse and human astrocytes enhanced parasite/astrocyte interaction (i.e., the percentage of astrocytes invaded by trypomastigote parasites and the number of intracellular parasite forms/astrocyte). Furthermore, T. cruzi infection drove astrocytes to a pro-inflammatory profile with TNF and interleukin-6 production, which was amplified by rTNF treatment. Adding rTNF prior to infection fueled parasite growth and trypomastigote egression, in parallel with increased TNFR1 expression. Importantly, pentoxifylline inhibited the TNF-induced increase in astrocyte susceptibility to T. cruzi invasion. In T. cruzi-infected mice, anti-TNF therapy reduced the number of amastigote nests in the brain. CONCLUSIONS: Our data implicate TNF as a promoter of T. cruzi invasion of mouse and human astrocytes. Moreover, the TNF-enriched inflammatory milieu and enhanced TNFR1 expression may favor TNF signaling, astrocyte colonization by T. cruzi and egression of trypomastigotes. Therefore, in T. cruzi infection, a self-sustaining TNF-induced inflammatory circuit may perpetuate the parasite cycle in the CNS and ultimately promote cytokine-driven behavioral alterations.


Asunto(s)
Astrocitos/metabolismo , Enfermedad de Chagas/metabolismo , Mediadores de Inflamación/metabolismo , Trypanosoma cruzi , Factor de Necrosis Tumoral alfa/toxicidad , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Línea Celular Tumoral , Células Cultivadas , Enfermedad de Chagas/patología , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL
8.
PLoS Pathog ; 11(1): e1004594, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25617628

RESUMEN

Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is a prototypical neglected tropical disease. Specific immunity promotes acute phase survival. Nevertheless, one-third of CD patients develop chronic chagasic cardiomyopathy (CCC) associated with parasite persistence and immunological unbalance. Currently, the therapeutic management of patients only mitigates CCC symptoms. Therefore, a vaccine arises as an alternative to stimulate protective immunity and thereby prevent, delay progression and even reverse CCC. We examined this hypothesis by vaccinating mice with replication-defective human Type 5 recombinant adenoviruses (rAd) carrying sequences of amastigote surface protein-2 (rAdASP2) and trans-sialidase (rAdTS) T. cruzi antigens. For prophylactic vaccination, naïve C57BL/6 mice were immunized with rAdASP2+rAdTS (rAdVax) using a homologous prime/boost protocol before challenge with the Colombian strain. For therapeutic vaccination, rAdVax administration was initiated at 120 days post-infection (dpi), when mice were afflicted by CCC. Mice were analyzed for electrical abnormalities, immune response and cardiac parasitism and tissue damage. Prophylactic immunization with rAdVax induced antibodies and H-2Kb-restricted cytotoxic and interferon (IFN)γ-producing CD8+ T-cells, reduced acute heart parasitism and electrical abnormalities in the chronic phase. Therapeutic vaccination increased survival and reduced electrical abnormalities after the prime (analysis at 160 dpi) and the boost (analysis at 180 and 230 dpi). Post-therapy mice exhibited less heart injury and electrical abnormalities compared with pre-therapy mice. rAdVax therapeutic vaccination preserved specific IFNγ-mediated immunity but reduced the response to polyclonal stimuli (anti-CD3 plus anti-CD28), CD107a+ CD8+ T-cell frequency and plasma nitric oxide (NO) levels. Moreover, therapeutic rAdVax reshaped immunity in the heart tissue as reduced the number of perforin+ cells, preserved the number of IFNγ+ cells, increased the expression of IFNγ mRNA but reduced inducible NO synthase mRNA. Vaccine-based immunostimulation with rAd might offer a rational alternative for re-programming the immune response to preserve and, moreover, recover tissue injury in Chagas' heart disease.


Asunto(s)
Cardiomiopatía Chagásica/prevención & control , Enfermedad de Chagas/inmunología , Enfermedad de Chagas/terapia , Vacunas Antiprotozoos/uso terapéutico , Trypanosoma cruzi/inmunología , Adenoviridae/genética , Adenoviridae/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Enfermedad Crónica , Femenino , Fenómenos del Sistema Inmunológico , Ratones , Ratones Endogámicos C57BL , Vacunación , Vacunas de ADN/genética , Vacunas de ADN/inmunología
9.
Antimicrob Agents Chemother ; 60(7): 4297-309, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27161638

RESUMEN

Chronic chagasic cardiomyopathy (CCC) progresses with parasite persistence, fibrosis, and electrical alterations associated with an unbalanced immune response such as high plasma levels of tumor necrosis factor (TNF) and nitric oxide (NO). Presently, the available treatments only mitigate the symptoms of CCC. To improve CCC prognosis, we interfered with the parasite load and unbalanced immune response using the trypanocidal drug benznidazole (Bz) and the immunoregulator pentoxifylline (PTX). C57BL/6 mice chronically infected with the Colombian strain of Trypanosoma cruzi and with signs of CCC were treated for 30 days with a suboptimal dose of Bz (25 mg/kg of body weight), PTX (20 mg/kg), or their combination (Bz plus PTX) and analyzed for electrocardiographic, histopathological, and immunological changes. Bz (76%) and Bz-plus-PTX (79%) therapies decreased parasite loads. Although the three therapies reduced myocarditis and fibrosis and ameliorated electrical alterations, only Bz plus PTX restored normal heart rate-corrected QT (QTc) intervals. Bz-plus-PTX-treated mice presented complementary effects of Bz and PTX, which reduced TNF expression (37%) in heart tissue and restored normal TNF receptor 1 expression on CD8(+) T cells, respectively. Bz (85%) and PTX (70%) therapies reduced the expression of inducible nitric oxide synthase (iNOS/NOS2) in heart tissue, but only Bz (58%) reduced NO levels in serum. These effects were more pronounced after Bz-plus-PTX therapy. Moreover, 30 to 50 days after treatment cessation, reductions of the prolonged QTc and QRS intervals were sustained in Bz-plus-PTX-treated mice. Our findings support the importance of interfering with the etiological agent and immunological abnormalities to improve CCC prognosis, opening an opportunity for a better quality of life for Chagas' disease (CD) patients.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Cardiopatías/tratamiento farmacológico , Nitroimidazoles/uso terapéutico , Pentoxifilina/uso terapéutico , Tripanocidas/uso terapéutico , Animales , Enfermedad de Chagas/metabolismo , Enfermedad de Chagas/parasitología , Femenino , Citometría de Flujo , Cardiopatías/metabolismo , Cardiopatías/parasitología , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/patogenicidad
10.
Mem Inst Oswaldo Cruz ; 110(8): 1042-50, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26676323

RESUMEN

The existence of the nervous form of Chagas disease is a matter of discussion since Carlos Chagas described neurological disorders, learning and behavioural alterations in Trypanosoma cruzi-infected individuals. In most patients, the clinical manifestations of the acute phase, including neurological abnormalities, resolve spontaneously without apparent consequence in the chronic phase of infection. However, chronic Chagas disease patients have behavioural changes such as psychomotor alterations, attention and memory deficits, and depression. In the present study, we tested whether or not behavioural alterations are reproducible in experimental models. We show that C57BL/6 mice chronically infected with the Colombian strain of T. cruzi (150 days post-infection) exhibit behavioural changes as (i) depression in the tail suspension and forced swim tests, (ii) anxiety analysed by elevated plus maze and open field test sand and (iii) motor coordination in the rotarod test. These alterations are neither associated with neuromuscular disorders assessed by the grip strength test nor with sickness behaviour analysed by temperature variation sand weight loss. Therefore, chronically T. cruzi-infected mice replicate behavioural alterations (depression and anxiety) detected in Chagas disease patients opening an opportunity to study the interconnection and the physiopathology of these two biological processes in an infectious scenario.


Asunto(s)
Ansiedad/parasitología , Enfermedad de Chagas/complicaciones , Depresión/parasitología , Conducta de Enfermedad , Actividad Motora , Trypanosoma cruzi , Animales , Escala de Evaluación de la Conducta , Sistema Nervioso Central/parasitología , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Suspensión Trasera , Ratones Endogámicos C57BL , Fuerza Muscular/fisiología , Parasitemia/mortalidad , Esfuerzo Físico , Equilibrio Postural/fisiología , Desempeño Psicomotor/fisiología , Natación
11.
PLoS Pathog ; 8(4): e1002645, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22532799

RESUMEN

In Chagas disease, CD8(+) T-cells are critical for the control of Trypanosoma cruzi during acute infection. Conversely, CD8(+) T-cell accumulation in the myocardium during chronic infection may cause tissue injury leading to chronic chagasic cardiomyopathy (CCC). Here we explored the role of CD8(+) T-cells in T. cruzi-elicited heart injury in C57BL/6 mice infected with the Colombian strain. Cardiomyocyte lesion evaluated by creatine kinase-MB isoenzyme activity levels in the serum and electrical abnormalities revealed by electrocardiogram were not associated with the intensity of heart parasitism and myocarditis in the chronic infection. Further, there was no association between heart injury and systemic anti-T. cruzi CD8(+) T-cell capacity to produce interferon-gamma (IFNγ) and to perform specific cytotoxicity. Heart injury, however, paralleled accumulation of anti-T. cruzi cells in the cardiac tissue. In T. cruzi infection, most of the CD8(+) T-cells segregated into IFNγ(+) perforin (Pfn)(neg) or IFNγ(neg)Pfn(+) cell populations. Colonization of the cardiac tissue by anti-T. cruzi CD8(+)Pfn(+) cells paralleled the worsening of CCC. The adoptive cell transfer to T. cruzi-infected cd8(-/-) recipients showed that the CD8(+) cells from infected ifnγ(-/-)pfn(+/+) donors migrate towards the cardiac tissue to a greater extent and caused a more severe cardiomyocyte lesion than CD8(+) cells from ifnγ(+/+)pfn(-/-) donors. Moreover, the reconstitution of naïve cd8(-/-) mice with CD8(+) cells from naïve ifnγ(+/+)pfn(-/-) donors ameliorated T. cruzi-elicited heart injury paralleled IFNγ(+) cells accumulation, whereas reconstitution with CD8(+) cells from naïve ifnγ(-/-)pfn(+/+) donors led to an aggravation of the cardiomyocyte lesion, which was associated with the accumulation of Pfn(+) cells in the cardiac tissue. Our data support a possible antagonist effect of CD8(+)Pfn(+) and CD8(+)IFNγ(+) cells during CCC. CD8(+)IFNγ(+) cells may exert a beneficial role, whereas CD8(+)Pfn(+) may play a detrimental role in T. cruzi-elicited heart injury.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Cardiomiopatía Chagásica/inmunología , Regulación de la Expresión Génica/inmunología , Interferón gamma/inmunología , Miocardio/inmunología , Proteínas Citotóxicas Formadoras de Poros/inmunología , Trypanosoma cruzi/inmunología , Enfermedad Aguda , Animales , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Movimiento Celular/genética , Movimiento Celular/inmunología , Cardiomiopatía Chagásica/genética , Cardiomiopatía Chagásica/metabolismo , Cardiomiopatía Chagásica/patología , Femenino , Regulación de la Expresión Génica/genética , Interferón gamma/biosíntesis , Interferón gamma/genética , Masculino , Ratones , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteínas Citotóxicas Formadoras de Poros/biosíntesis , Proteínas Citotóxicas Formadoras de Poros/genética , Trypanosoma cruzi/metabolismo
12.
Parasitology ; 141(13): 1769-78, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25093253

RESUMEN

SUMMARY Antibodies (Ab) recognizing G-protein coupled receptors, such as ß 1 and ß 2 adrenergic (anti-ß 1-AR and anti-ß 2-AR, respectively) and muscarinic cholinergic receptors (anti-M2-CR) may contribute to cardiac damage, however their role in chronic chagasic cardiomyopathy is still controversial. We describe that Trypanosoma cruzi-infected C3H/He mice show increased P and QRS wave duration, and PR and QTc intervals, while the most significant ECG alterations in C57BL/6 are prolonged P wave and PR interval. Echocardiogram analyses show right ventricle dilation in infected animals of both mouse lineages. Analyses of heart rate variability (HRV) in chronically infected C3H/He mice show no alteration of the evaluated parameters, while C57BL/6 infected mice display significantly lower values of HRV components, suggesting autonomic dysfunction. The time-course analysis of anti-ß 1-AR, anti-ß 2-AR and anti-M2-CR Ab titres in C3H/He infected mice indicate that anti-ß 1-AR Ab are detected only in the chronic phase, while anti-ß 2-AR and anti-M2-CR are observed in the acute phase, diminish at 60 dpi and increase again in the chronic phase. Chronically infected C57BL/6 mice presented a significant increase in only anti-M2-CR Ab titres. Furthermore, anti-ß 1-AR, anti-ß 2-AR and anti-M2-CR, exhibit significantly higher prevalence in chronically T. cruzi-infected C3H/He mice when compared with C57BL/6. These observations suggest that T. cruzi infection leads to host-specific cardiac electric alterations.


Asunto(s)
Antagonistas Adrenérgicos/sangre , Anticuerpos Antiprotozoarios/sangre , Arritmias Cardíacas/fisiopatología , Enfermedad de Chagas/fisiopatología , Colinérgicos/sangre , Disautonomías Primarias/fisiopatología , Trypanosoma cruzi/fisiología , Animales , Cardiomiopatía Chagásica/parasitología , Cardiomiopatía Chagásica/fisiopatología , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Receptor Muscarínico M2/metabolismo , Receptores Adrenérgicos beta 1/metabolismo
13.
Mediators Inflamm ; 2014: 798078, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25140115

RESUMEN

BACKGROUND: Chagas disease (CD) is characterized by parasite persistence and immunological unbalance favoring systemic inflammatory profile. Chronic chagasic cardiomyopathy, the main manifestation of CD, occurs in a TNF-enriched milieu and frequently progresses to heart failure. AIM OF THE STUDY: To challenge the hypothesis that TNF plays a key role in Trypanosoma cruzi-induced immune deregulation and cardiac abnormalities, we tested the effect of the anti-TNF antibody Infliximab in chronically T. cruzi-infected C57BL/6 mice, a model with immunological, electrical, and histopathological abnormalities resembling Chagas' heart disease. RESULTS: Infliximab therapy did not reactivate parasite but reshaped the immune response as reduced TNF mRNA expression in the cardiac tissue and plasma TNF and IFNγ levels; diminished the frequency of IL-17A(+) but increased IL-10(+) CD4(+) T-cells; reduced TNF(+) but augmented IL-10(+) Ly6C(+) and F4/80(+) cells. Further, anti-TNF therapy decreased cytotoxic activity but preserved IFNγ-producing VNHRFTLV-specific CD8(+) T-cells in spleen and reduced the number of perforin(+) cells infiltrating the myocardium. Importantly, Infliximab reduced the frequency of mice afflicted by arrhythmias and second degree atrioventricular blocks and decreased fibronectin deposition in the cardiac tissue. CONCLUSIONS: Our data support that TNF is a crucial player in the pathogenesis of Chagas' heart disease fueling immunological unbalance which contributes to cardiac abnormalities.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/metabolismo , Cardiopatías/tratamiento farmacológico , Cardiopatías/metabolismo , Trypanosoma cruzi/patogenicidad , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Anticuerpos Monoclonales/uso terapéutico , Femenino , Citometría de Flujo , Corazón/efectos de los fármacos , Corazón/parasitología , Inmunohistoquímica , Infliximab , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
14.
Mem Inst Oswaldo Cruz ; 109(3): 289-98, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24937048

RESUMEN

Heart tissue inflammation, progressive fibrosis and electrocardiographic alterations occur in approximately 30% of patients infected by Trypanosoma cruzi, 10-30 years after infection. Further, plasma levels of tumour necrosis factor (TNF) and nitric oxide (NO) are associated with the degree of heart dysfunction in chronic chagasic cardiomyopathy (CCC). Thus, our aim was to establish experimental models that mimic a range of parasitological, pathological and cardiac alterations described in patients with chronic Chagas' heart disease and evaluate whether heart disease severity was associated with increased TNF and NO levels in the serum. Our results show that C3H/He mice chronically infected with the Colombian T. cruzi strain have more severe cardiac parasitism and inflammation than C57BL/6 mice. In addition, connexin 43 disorganisation and fibronectin deposition in the heart tissue, increased levels of creatine kinase cardiac MB isoenzyme activity in the serum and more severe electrical abnormalities were observed in T. cruzi-infected C3H/He mice compared to C57BL/6 mice. Therefore, T. cruzi-infected C3H/He and C57BL/6 mice represent severe and mild models of CCC, respectively. Moreover, the CCC severity paralleled the TNF and NO levels in the serum. Therefore, these models are appropriate for studying the pathophysiology and biomarkers of CCC progression, as well as for testing therapeutic agents for patients with Chagas' heart disease.


Asunto(s)
Cardiomiopatía Chagásica/sangre , Óxido Nítrico/sangre , Factores de Necrosis Tumoral/sangre , Animales , Biomarcadores/sangre , Cardiomiopatía Chagásica/patología , Cardiomiopatía Chagásica/fisiopatología , Enfermedad Crónica , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Índice de Severidad de la Enfermedad
15.
PLoS Negl Trop Dis ; 18(5): e0012199, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38776344

RESUMEN

BACKGROUND: In Chagas disease (CD), a neglected tropical disease caused by the parasite Trypanosoma cruzi, the development of mental disorders such as anxiety, depression, and memory loss may be underpinned by social, psychological, and biological stressors. Here, we investigated biological factors underlying behavioral changes in a preclinical model of CD. METHODOLOGY/PRINCIPAL FINDINGS: In T. cruzi-infected C57BL/6 mice, a kinetic study (5 to 150 days postinfection, dpi) using standardized methods revealed a sequential onset of behavioral changes: reduced innate compulsive behavior, followed by anxiety and depressive-like behavior, ending with progressive memory impairments. Hence, T. cruzi-infected mice were treated (120 to 150 dpi) with 10 mg/Kg/day of the selective serotonin reuptake inhibitor fluoxetine (Fx), an antidepressant that favors neuroplasticity. Fx therapy reversed the innate compulsive behavior loss, anxiety, and depressive-like behavior while preventing or reversing memory deficits. Biochemical, histological, and parasitological analyses of the brain tissue showed increased levels of the neurotransmitters GABA/glutamate and lipid peroxidation products and decreased expression of brain-derived neurotrophic factor in the absence of neuroinflammation at 150 dpi. Fx therapy ameliorated the neurochemical changes and reduced parasite load in the brain tissue. Next, using the human U-87 MG astroglioma cell line, we found no direct effect of Fx on parasite load. Crucially, serotonin/5-HT (Ser/5-HT) promoted parasite uptake, an effect increased by prior stimulation with IFNγ and TNF but abrogated by Fx. Also, Fx blocked the cytokine-driven Ser/5-HT-promoted increase of nitric oxide and glutamate levels in infected cells. CONCLUSION/SIGNIFICANCE: We bring the first evidence of a sequential onset of behavioral changes in T. cruzi-infected mice. Fx therapy improves behavioral and biological changes and parasite control in the brain tissue. Moreover, in the central nervous system, cytokine-driven Ser/5-HT consumption may favor parasite persistence, disrupting neurotransmitter balance and promoting a neurotoxic environment likely contributing to behavioral and cognitive disorders.


Asunto(s)
Astrocitos , Enfermedad de Chagas , Fluoxetina , Ratones Endogámicos C57BL , Serotonina , Trypanosoma cruzi , Animales , Fluoxetina/farmacología , Fluoxetina/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/psicología , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/fisiología , Serotonina/metabolismo , Ratones , Astrocitos/efectos de los fármacos , Modelos Animales de Enfermedad , Encéfalo/efectos de los fármacos , Encéfalo/parasitología , Encéfalo/metabolismo , Conducta Animal/efectos de los fármacos , Masculino , Humanos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéutico , Cognición/efectos de los fármacos , Depresión/tratamiento farmacológico , Carga de Parásitos , Ansiedad/tratamiento farmacológico
16.
Biomed Pharmacother ; 175: 116742, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754265

RESUMEN

Chagasic chronic cardiomyopathy (CCC) is the primary clinical manifestation of Chagas disease (CD), caused by Trypanosoma cruzi. Current therapeutic options for CD are limited to benznidazole (Bz) and nifurtimox. Amiodarone (AMD) has emerged as most effective drug for treating the arrhythmic form of CCC. To address the effects of Bz and AMD we used a preclinical model of CCC. Female C57BL/6 mice were infected with T. cruzi and subjected to oral treatment for 30 consecutive days, either as monotherapy or in combination. AMD in monotherapy decreased the prolonged QTc interval, the incidence of atrioventricular conduction disorders and cardiac hypertrophy. However, AMD monotherapy did not impact parasitemia, parasite load, TNF concentration and production of reactive oxygen species (ROS) in cardiac tissue. Alike Bz therapy, the combination of Bz and AMD (Bz/AMD), improved cardiac electric abnormalities detected T. cruzi-infected mice such as decrease in heart rates, enlargement of PR and QTc intervals and increased incidence of atrioventricular block and sinus arrhythmia. Further, Bz/AMD therapy ameliorated the ventricular function and reduced parasite burden in the cardiac tissue and parasitemia to a degree comparable to Bz monotherapy. Importantly, Bz/AMD treatment efficiently reduced TNF concentration in the cardiac tissue and plasma and had beneficial effects on immunological abnormalities. Moreover, in the cardiac tissue Bz/AMD therapy reduced fibronectin and collagen deposition, mitochondrial damage and production of ROS, and improved sarcomeric and gap junction integrity. Our study underlines the potential of the Bz/AMD therapy, as we have shown that combination increased efficacy in the treatment of CCC.


Asunto(s)
Amiodarona , Cardiomiopatía Chagásica , Modelos Animales de Enfermedad , Quimioterapia Combinada , Ratones Endogámicos C57BL , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Animales , Nitroimidazoles/farmacología , Nitroimidazoles/administración & dosificación , Nitroimidazoles/uso terapéutico , Femenino , Trypanosoma cruzi/efectos de los fármacos , Amiodarona/farmacología , Amiodarona/administración & dosificación , Cardiomiopatía Chagásica/tratamiento farmacológico , Cardiomiopatía Chagásica/parasitología , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Ratones , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Especies Reactivas de Oxígeno/metabolismo , Enfermedad Crónica , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Factor de Necrosis Tumoral alfa/metabolismo , Carga de Parásitos
17.
PLoS Negl Trop Dis ; 17(3): e0011223, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36972298

RESUMEN

Chronic Chagas cardiomyopathy (CCC) is one of the leading causes of morbidity and mortality due to cardiovascular disorders in endemic areas of Chagas disease (CD), a neglected tropical illness caused by the protozoan parasite Trypanosoma cruzi. CCC is characterized by parasite persistence and inflammatory response in the heart tissue, which occur parallel to microRNA (miRNA) alterations. Here, we investigated the miRNA transcriptome profiling in the cardiac tissue of chronically T. cruzi-infected mice treated with a suboptimal dose of benznidazole (Bz), the immunomodulator pentoxifylline alone (PTX), or the combination of both (Bz+PTX), following the CCC onset. At 150 days post-infection, Bz, PTX, and Bz+PTX treatment regimens improved electrocardiographic alterations, reducing the percentage of mice afflicted by sinus arrhythmia and second-degree atrioventricular block (AVB2) when compared with the vehicle-treated animals. miRNA Transcriptome profiling revealed considerable changes in the differential expression of miRNAs in the Bz and Bz+PTX treatment groups compared with the control (infected, vehicle-treated) group. The latter showed pathways related to organismal abnormalities, cellular development, skeletal muscle development, cardiac enlargement, and fibrosis, likely associated with CCC. Bz-Treated mice exhibited 68 differentially expressed miRNAs related to signaling pathways like cell cycle, cell death and survival, tissue morphology, and connective tissue function. Finally, the Bz+PTX-treated group revealed 58 differentially expressed miRNAs associated with key signaling pathways related to cellular growth and proliferation, tissue development, cardiac fibrosis, damage, and necrosis/cell death. The T. cruzi-induced upregulation of miR-146b-5p, previously shown in acutely infected mice and in vitro T. cruzi-infected cardiomyocytes, was reversed upon Bz and Bz+PTX treatment regimens when further experimentally validated. Our results further our understanding of molecular pathways related to CCC progression and evaluation of treatment response. Moreover, the differentially expressed miRNAs may serve as drug targets, associated molecular therapy, or biomarkers of treatment outcomes.


Asunto(s)
Cardiomiopatía Chagásica , Enfermedad de Chagas , MicroARNs , Nitroimidazoles , Pentoxifilina , Tripanocidas , Trypanosoma cruzi , Animales , Ratones , Cardiomiopatía Chagásica/tratamiento farmacológico , Pentoxifilina/farmacología , Pentoxifilina/uso terapéutico , Transcriptoma , Modelos Animales de Enfermedad , Trypanosoma cruzi/genética , Enfermedad de Chagas/parasitología , Nitroimidazoles/farmacología , Nitroimidazoles/uso terapéutico , MicroARNs/genética , Fibrosis , Perfilación de la Expresión Génica , Tripanocidas/farmacología
18.
Biology (Basel) ; 12(11)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37998013

RESUMEN

Chagas disease (CD) caused by Trypanosoma cruzi is a neglected illness and a major reason for cardiomyopathy in endemic areas. The existing therapy generally involves trypanocidal agents and therapies that control cardiac alterations. However, there is no treatment for the progressive cardiac remodeling that is characterized by inflammation, microvasculopathy and extensive fibrosis. Thus, the search for new therapeutic strategies aiming to inhibit the progression of cardiac injury and failure is necessary. Vascular Endothelial Growth Factor A (VEGF-A) is the most potent regulator of vasculogenesis and angiogenesis and has been implicated in inducing exacerbated angiogenesis and fibrosis in chronic inflammatory diseases. Since cardiac microvasculopathy in CD is also characterized by exacerbated angiogenesis, we investigated the effect of inhibition of the VEGF signaling pathway using a monoclonal antibody (bevacizumab) on cardiac remodeling and function. Swiss Webster mice were infected with Y strain, and cardiac morphological and molecular analyses were performed. We found that bevacizumab significantly increased survival, reduced inflammation, improved cardiac electrical function, diminished angiogenesis, decreased myofibroblasts in cardiac tissue and restored collagen levels. This work shows that VEGF is involved in cardiac microvasculopathy and fibrosis in CD and the inhibition of this factor could be a potential therapeutic strategy for CD.

19.
J Clin Med ; 12(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37109224

RESUMEN

Chagas disease, the parasitic infection caused by Trypanosoma cruzi, afflicts about 6 million people in Latin America. Here, we investigated the hypothesis that T. cruzi may fuel heart parasitism by activating B1R, a G protein-coupled (brady) kinin receptor whose expression is upregulated in inflamed tissues. Studies in WT and B1R-/- mice showed that T. cruzi DNA levels (15 days post infection-dpi) were sharply reduced in the transgenic heart. FACS analysis revealed that frequencies of proinflammatory neutrophils and monocytes were diminished in B1R-/- hearts whereas CK-MB activity (60 dpi) was exclusively detected in B1R+/+ sera. Since chronic myocarditis and heart fibrosis (90 dpi) were markedly attenuated in the transgenic mice, we sought to determine whether a pharmacological blockade of the des-Arg9-bradykinin (DABK)/B1R pathway might alleviate chagasic cardiomyopathy. Using C57BL/6 mice acutely infected by a myotropic T. cruzi strain (Colombian), we found that daily treatment (15-60 dpi) with R-954 (B1R antagonist) reduced heart parasitism and blunted cardiac injury. Extending R-954 treatment to the chronic phase (120-160 dpi), we verified that B1R targeting (i) decreased mortality indexes, (ii) mitigated chronic myocarditis, and (iii) ameliorated heart conduction disturbances. Collectively, our study suggests that a pharmacological blockade of the proinflammatory KKS/DABK/B1R pathway is cardioprotective in acute and chronic Chagas disease.

20.
NPJ Vaccines ; 8(1): 81, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258518

RESUMEN

Immunization with the Amastigote Surface Protein-2 (ASP-2) and Trans-sialidase (TS) antigens either in the form of recombinant protein, encoded in plasmids or human adenovirus 5 (hAd5) confers robust protection against various lineages of Trypanosoma cruzi. Herein we generated a chimeric protein containing the most immunogenic regions for T and B cells from TS and ASP-2 (TRASP) and evaluated its immunogenicity in comparison with our standard protocol of heterologous prime-boost using plasmids and hAd5. Mice immunized with TRASP protein associated to Poly-ICLC (Hiltonol) were highly resistant to challenge with T. cruzi, showing a large decrease in tissue parasitism, parasitemia and no lethality. This protection lasted for at least 3 months after the last boost of immunization, being equivalent to the protection induced by DNA/hAd5 protocol. TRASP induced high levels of T. cruzi-specific antibodies and IFNγ-producing T cells and protection was primarily mediated by CD8+ T cells and IFN-γ. We also evaluated the toxicity, immunogenicity, and efficacy of TRASP and DNA/hAd5 formulations in dogs. Mild collateral effects were detected at the site of vaccine inoculation. While the chimeric protein associated with Poly-ICLC induced high levels of antibodies and CD4+ T cell responses, the DNA/hAd5 induced no antibodies, but a strong CD8+ T cell response. Immunization with either vaccine protected dogs against challenge with T. cruzi. Despite the similar efficacy, we conclude that moving ahead with TRASP together with Hiltonol is advantageous over the DNA/hAd5 vaccine due to pre-existing immunity to the adenovirus vector, as well as the cost-benefit for development and large-scale production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA