Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
PLoS Pathog ; 19(3): e1011260, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36972292

RESUMEN

Leprosy, caused by Mycobacterium leprae, rarely affects children younger than 5 years. Here, we studied a multiplex leprosy family that included monozygotic twins aged 22 months suffering from paucibacillary leprosy. Whole genome sequencing identified three amino acid mutations previously associated with Crohn's disease and Parkinson's disease as candidate variants for early onset leprosy: LRRK2 N551K, R1398H and NOD2 R702W. In genome-edited macrophages, we demonstrated that cells expressing the LRRK2 mutations displayed reduced apoptosis activity following mycobacterial challenge independently of NOD2. However, employing co-immunoprecipitation and confocal microscopy we showed that LRRK2 and NOD2 proteins interacted in RAW cells and monocyte-derived macrophages, and that this interaction was substantially reduced for the NOD2 R702W mutation. Moreover, we observed a joint effect of LRRK2 and NOD2 variants on Bacillus Calmette-Guérin (BCG)-induced respiratory burst, NF-κB activation and cytokine/chemokine secretion with a strong impact for the genotypes found in the twins consistent with a role of the identified mutations in the development of early onset leprosy.


Asunto(s)
Predisposición Genética a la Enfermedad , Lepra , Niño , Humanos , Alelos , Genotipo , Lepra/genética , Mutación , Proteína Adaptadora de Señalización NOD2/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética
2.
J Neurochem ; 164(2): 158-171, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36349509

RESUMEN

Leprosy is a chronic infectious disease caused by Mycobacterium leprae infection in Schwann cells. Axonopathy is considered a hallmark of leprosy neuropathy and is associated with the irreversible motor and sensory loss seen in infected patients. Although M. leprae is recognized to provoke Schwann cell dedifferentiation, the mechanisms involved in the contribution of this phenomenon to neural damage remain unclear. In the present work, we used live M. leprae to infect the immortalized human Schwann cell line ST8814. The neurotoxicity of infected Schwann cell-conditioned medium (SCCM) was then evaluated in a human neuroblastoma cell lineage and mouse neurons. ST8814 Schwann cells exposed to M. leprae affected neuronal viability by deviating glial 14 C-labeled lactate, important fuel of neuronal central metabolism, to de novo lipid synthesis. The phenolic glycolipid-1 (PGL-1) is a specific M. leprae cell wall antigen proposed to mediate bacterial-Schwann cell interaction. Therefore, we assessed the role of the PGL-1 on Schwann cell phenotype by using transgenic M. bovis (BCG)-expressing the M. leprae PGL-1. We observed that BCG-PGL-1 was able to induce a phenotype similar to M. leprae, unlike the wild-type BCG strain. We next demonstrated that this Schwann cell neurotoxic phenotype, induced by M. leprae PGL-1, occurs through the protein kinase B (Akt) pathway. Interestingly, the pharmacological inhibition of Akt by triciribine significantly reduced free fatty acid content in the SCCM from M. leprae- and BCG-PGL-1-infected Schwann cells and, hence, preventing neuronal death. Overall, these findings provide novel evidence that both M. leprae and PGL-1, induce a toxic Schwann cell phenotype, by modifying the host lipid metabolism, resulting in profound implications for neuronal loss. We consider this metabolic rewiring a new molecular mechanism to be the basis of leprosy neuropathy.


Asunto(s)
Lepra , Mycobacterium leprae , Humanos , Animales , Ratones , Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucolípidos/metabolismo , Vacuna BCG/metabolismo , Lepra/microbiología , Células de Schwann/metabolismo
3.
Mem Inst Oswaldo Cruz ; 117: e220058, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36259791

RESUMEN

BACKGROUND: Leprosy is curable by multidrug therapy (MDT) treatment regimen ranging from six to 12 months. The variable levels of tolerance and adherence among patients can, however, result in treatment failure and the emergence of drug-resistant strains. OBJECTIVES: Describe the impact of MDT over Mycobacterium leprae viability in patient's oral and nasal mucosa along treatment. METHODS: Mycobacterium leprae viability was monitored by quantitative polymerase chain reaction (qPCR) quantification of 16S rRNA in lateral and contralateral scrapings of oral and nasal mucosa of 10 multibacillary patients along the initial five months of treatment. FINDINGS: The results demonstrated high heterogenicity of M. leprae viability among patients and between nasal and oral samples. Of six patients who presented good adherence and tolerance to the treatment, only four displayed absence of M. leprae viability in both samples three months after the first MDT dose, while for the other two, the absence of M. leprae viability in the oral and nasal cavities was only detected five months after the first dose. MAIN CONCLUSIONS: We concluded that qPCR of 16S rRNA for the determination of M. leprae viability in nasal and oral scraping samples could represent an interesting approach to monitor treatment efficacy.


Asunto(s)
Leprostáticos , Mycobacterium leprae , Humanos , Mycobacterium leprae/genética , ARN Ribosómico 16S/genética , Leprostáticos/uso terapéutico , Quimioterapia Combinada , Mucosa Nasal/microbiología , ADN Bacteriano/genética
4.
Cell Microbiol ; 22(1): e13128, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31652371

RESUMEN

Leprosy neuropathy is a chronic degenerative infectious disorder of the peripheral nerve caused by the intracellular obligate pathogen Mycobacterium leprae (M. leprae). Among all nonneuronal cells that constitute the nerve, Schwann cells are remarkable in supporting M. leprae persistence intracellularly. Notably, the success of leprosy infection has been attributed to its ability in inducing the demyelination phenotype after contacting myelinated fibres. However, the exact role M. leprae plays during the ongoing process of myelin breakdown is entirely unknown. Here, we provided evidence showing an unexpected predilection of leprosy pathogen for degenerating myelin ovoids inside Schwann cells. In addition, M. leprae infection accelerated the rate of myelin breakdown and clearance leading to increased formation of lipid droplets, by modulating a set of regulatory genes involved in myelin maintenance, autophagy, and lipid storage. Remarkably, the blockage of myelin breakdown significantly reduced M. leprae content, demonstrating a new unpredictable role of myelin dismantling favouring M. leprae physiology. Collectively, our study provides novel evidence that may explain the demyelination phenotype as an evolutionarily conserved mechanism used by leprosy pathogen to persist longer in the peripheral nerve.


Asunto(s)
Mycobacterium leprae/fisiología , Vaina de Mielina/metabolismo , Células de Schwann/microbiología , Animales , Células Cultivadas , Humanos , Lepra/complicaciones , Lepra/microbiología , Masculino , Ratones , Ratones Endogámicos BALB C , Mycobacterium leprae/patogenicidad , Vaina de Mielina/microbiología
5.
PLoS Pathog ; 14(7): e1007151, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29979790

RESUMEN

Mycobacterium leprae, an obligate intracellular bacillus, infects Schwann cells (SCs), leading to peripheral nerve damage, the most severe leprosy symptom. In the present study, we revisited the involvement of phenolic glycolipid I (PGL I), an abundant, private, surface M. leprae molecule, in M. leprae-SC interaction by using a recombinant strain of M. bovis BCG engineered to express this glycolipid. We demonstrate that PGL I is essential for bacterial adhesion and SC internalization. We also show that live mycobacterium-producing PGL I induces the expression of the endocytic mannose receptor (MR/CD206) in infected cells in a peroxisome proliferator-activated receptor gamma (PPARγ)-dependent manner. Of note, blocking mannose recognition decreased bacterial entry and survival, pointing to a role for this alternative recognition pathway in bacterial pathogenesis in the nerve. Moreover, an active crosstalk between CD206 and the nuclear receptor PPARγ was detected that led to the induction of lipid droplets (LDs) formation and prostaglandin E2 (PGE2), previously described as fundamental players in bacterial pathogenesis. Finally, this pathway was shown to induce IL-8 secretion. Altogether, our study provides evidence that the entry of live M. leprae through PGL I recognition modulates the SC phenotype, favoring intracellular bacterial persistence with the concomitant secretion of inflammatory mediators that may ultimately be involved in neuroinflammation.


Asunto(s)
Antígenos Bacterianos/metabolismo , Glucolípidos/metabolismo , Lectinas Tipo C/metabolismo , Lepra/metabolismo , Lectinas de Unión a Manosa/metabolismo , PPAR gamma/metabolismo , Receptores de Superficie Celular/metabolismo , Células de Schwann/virología , Humanos , Receptor de Manosa , Mycobacterium leprae/metabolismo , Receptor Cross-Talk/fisiología
6.
Mem Inst Oswaldo Cruz ; 115: e200075, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32696914

RESUMEN

BACKGROUND: Although Mycobacterium leprae (ML) is well characterised as the causative agent of leprosy, the pathophysiological mechanisms underlying peripheral nerve damage still need further understanding. In vitro and in vivo studies have yielded insights into molecular mechanisms of ML interaction with Schwann cells (SC), indicating the regulation of genes and proteins crucial to neural plasticity. OBJECTIVES: We aimed to investigate the effect of ML on neurotrophins expression in human SC (hSC) and mice sciatic nerves to better understand their role in leprosy neuropathy, and aiming to contribute to future therapeutic approaches. METHODS: We evaluated mRNA and protein expression of BDNF, NGF, NT-3, NT-4 in hSC from amputation nerve fragments, as well as in athymic nude mice, infected by ML for eight months. FINDINGS AND MAIN CONCLUSIONS: Our in vitro results showed a trend to decline in NGF and BDNF mRNA in ML-treated hSC, compared to controls. The immunodetection of BDNF and NT-4 was significantly downregulated in ML-treated hSC. Conversely, ML-infected mice demonstrated upregulation of NT-3, compared to non-infected animals. Our findings indicate that ML may be involved in neurotrophins regulation, suggesting that a pathogen-related imbalance of these growth factors may have a role in the neural impairment of leprosy.


Asunto(s)
Mycobacterium leprae , Factores de Crecimiento Nervioso/metabolismo , Células de Schwann/metabolismo , Nervio Ciático/metabolismo , Animales , Humanos , Ratones , Ratones Desnudos
7.
Mol Cell Biochem ; 447(1-2): 1-7, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29372531

RESUMEN

The human amylin is a pancreatic peptide hormone found in hyperhormonemic state along with insulin in subclinical diabetes. Amylin has been associated with the pathology of type 2 diabetes, particularly due to its ability to assembly into toxic oligomers and amyloid specimens. On the other hand, some variants such as murine amylin has been described as non-amyloidogenic, either in vitro or in vivo. Recent data have demonstrated the amyloid propensity of murine amylin and the therapeutic analogue pramlintide, suggesting a universality for amylin amyloidosis. Here, we report the amyloidogenesis of murine amylin, which showed lower responsivity to the fluorescent probe thioflavin T compared to human amylin, but presented highly organized fibrilar amyloid material. The aggregation of murine amylin also resulted in the formation of cytotoxic specimens, as evaluated in vitro in INS-1 cells. The aggregation product from murine amylin was responsive to a specific antibody raised against amyloid oligomers, the A11 oligomer antibody. Pancreatic islets of wild-type Swiss male mice have also shown responsivity for the anti-oligomer, indicating the natural abundance of such specimen in rodents. These data provide for the first time evidences for the toxic nature of oligomeric assemblies of murine amylin and its existence in wild-type, non-transgenic mice.


Asunto(s)
Amiloide/inmunología , Anticuerpos/farmacología , Células Secretoras de Insulina/inmunología , Polipéptido Amiloide de los Islotes Pancreáticos/inmunología , Polipéptido Amiloide de los Islotes Pancreáticos/toxicidad , Agregación Patológica de Proteínas/inmunología , Animales , Anticuerpos/inmunología , Humanos , Células Secretoras de Insulina/patología , Masculino , Ratones , Agregación Patológica de Proteínas/patología
8.
J Biol Chem ; 291(41): 21375-21387, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27555322

RESUMEN

Mycobacterium leprae, the intracellular etiological agent of leprosy, infects Schwann promoting irreversible physical disabilities and deformities. These cells are responsible for myelination and maintenance of axonal energy metabolism through export of metabolites, such as lactate and pyruvate. In the present work, we observed that infected Schwann cells increase glucose uptake with a concomitant increase in glucose-6-phosphate dehydrogenase (G6PDH) activity, the key enzyme of the oxidative pentose pathway. We also observed a mitochondria shutdown in infected cells and mitochondrial swelling in pure neural leprosy nerves. The classic Warburg effect described in macrophages infected by Mycobacterium avium was not observed in our model, which presented a drastic reduction in lactate generation and release by infected Schwann cells. This effect was followed by a decrease in lactate dehydrogenase isoform M (LDH-M) activity and an increase in cellular protection against hydrogen peroxide insult in a pentose phosphate pathway and GSH-dependent manner. M. leprae infection success was also dependent of the glutathione antioxidant system and its main reducing power source, the pentose pathway, as demonstrated by a 50 and 70% drop in intracellular viability after treatment with the GSH synthesis inhibitor buthionine sulfoximine, and aminonicotinamide (6-ANAM), an inhibitor of G6PDH 6-ANAM, respectively. We concluded that M. leprae could modulate host cell glucose metabolism to increase the cellular reducing power generation, facilitating glutathione regeneration and consequently free-radical control. The impact of this regulation in leprosy neuropathy is discussed.


Asunto(s)
Metabolismo Energético , Glucosa/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Lepra Tuberculoide/metabolismo , Mycobacterium leprae/metabolismo , Células de Schwann/metabolismo , Línea Celular , Humanos , Metionina/análogos & derivados , Metionina/farmacología , Mitocondrias/metabolismo , Células de Schwann/microbiología
9.
J Infect Dis ; 214(2): 311-20, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27190175

RESUMEN

Cytosolic detection of nucleic acids elicits a type I interferon (IFN) response and plays a critical role in host defense against intracellular pathogens. Herein, a global gene expression profile of Mycobacterium leprae-infected primary human Schwann cells identified the genes differentially expressed in the type I IFN pathway. Among them, the gene encoding 2'-5' oligoadenylate synthetase-like (OASL) underwent the greatest upregulation and was also shown to be upregulated in M. leprae-infected human macrophage cell lineages, primary monocytes, and skin lesion specimens from patients with a disseminated form of leprosy. OASL knock down was associated with decreased viability of M. leprae that was concomitant with upregulation of either antimicrobial peptide expression or autophagy levels. Downregulation of MCP-1/CCL2 release was also observed during OASL knock down. M. leprae-mediated OASL expression was dependent on cytosolic DNA sensing mediated by stimulator of IFN genes signaling. The addition of M. leprae DNA enhanced nonpathogenic Mycobacterium bovis bacillus Calmette-Guerin intracellular survival, downregulated antimicrobial peptide expression, and increased MCP-1/CCL2 secretion. Thus, our data uncover a promycobacterial role for OASL during M. leprae infection that directs the host immune response toward a niche that permits survival of the pathogen.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/metabolismo , Interacciones Huésped-Patógeno , Proteínas de la Membrana/metabolismo , Viabilidad Microbiana , Mycobacterium leprae/fisiología , Células de Schwann/microbiología , Células Cultivadas , Células Epiteliales/microbiología , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Lepra/microbiología , Lepra/patología , Macrófagos/microbiología , Mycobacterium bovis/fisiología
10.
Antimicrob Agents Chemother ; 58(10): 5766-74, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25049257

RESUMEN

Mycobacterium leprae and Mycobacterium tuberculosis antimicrobial resistance has been followed with great concern during the last years, while the need for new drugs able to control leprosy and tuberculosis, mainly due to extensively drug-resistant tuberculosis (XDR-TB), is pressing. Our group recently showed that M. leprae is able to induce lipid body biogenesis and cholesterol accumulation in macrophages and Schwann cells, facilitating its viability and replication. Considering these previous results, we investigated the efficacies of two statins on the intracellular viability of mycobacteria within the macrophage, as well as the effect of atorvastatin on M. leprae infections in BALB/c mice. We observed that intracellular mycobacteria viability decreased markedly after incubation with both statins, but atorvastatin showed the best inhibitory effect when combined with rifampin. Using Shepard's model, we observed with atorvastatin an efficacy in controlling M. leprae and inflammatory infiltrate in the BALB/c footpad, in a serum cholesterol level-dependent way. We conclude that statins contribute to macrophage-bactericidal activity against Mycobacterium bovis, M. leprae, and M. tuberculosis. It is likely that the association of statins with the actual multidrug therapy effectively reduces mycobacterial viability and tissue lesion in leprosy and tuberculosis patients, although epidemiological studies are still needed for confirmation.


Asunto(s)
Antituberculosos/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Mycobacterium leprae/efectos de los fármacos , Mycobacterium leprae/patogenicidad , Rifampin/uso terapéutico , Animales , Atorvastatina , Línea Celular , Sinergismo Farmacológico , Ácidos Heptanoicos/uso terapéutico , Humanos , Lepra/tratamiento farmacológico , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/patogenicidad , Pirroles/uso terapéutico , Simvastatina/uso terapéutico
11.
Microbes Infect ; 26(3): 105283, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38141852

RESUMEN

Leprosy is a chronic infectious disease caused by the intracellular bacillus Mycobacterium leprae (M. leprae), which is known to infect skin macrophages and Schwann cells. Although adipose tissue is a recognized site of Mycobacterium tuberculosis infection, its role in the histopathology of leprosy was, until now, unknown. We analyzed the M. leprae capacity to infect and persist inside adipocytes, characterizing the induction of a lipolytic phenotype in adipocytes, as well as the effect of these infected cells on macrophage recruitment. We evaluated 3T3-L1-derived adipocytes, inguinal adipose tissue of SWR/J mice, and subcutaneous adipose tissue biopsies of leprosy patients. M. leprae was able to infect 3T3-L1-derived adipocytes in vitro, presenting a strong lipolytic profile after infection, followed by significant cholesterol efflux. This lipolytic phenotype was replicated in vivo by M. leprae injection into mice inguinal adipose tissue. Furthermore, M. leprae was detected inside crown-like structures in the subcutaneous adipose tissue of multibacillary patients. These data indicate that subcutaneous adipose tissue could be an important site of infection, and probably persistence, for M. leprae, being involved in the modulation of the innate immune control in leprosy via the release of cholesterol, MCP-1, and adiponectin.


Asunto(s)
Lepra , Mycobacterium leprae , Ratones , Animales , Humanos , Mycobacterium leprae/fisiología , Lipólisis , Adipocitos/patología , Inmunidad , Colesterol
12.
IBRO Neurosci Rep ; 15: 11-16, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38204570

RESUMEN

Mycobacterium leprae, the pathogen that causes human leprosy, has a unique affinity for infecting and persisting inside Schwann cells, the principal glia of the peripheral nervous system. Several studies have focused on this intricate host-pathogen interaction as an attempt to advance the current knowledge of the mechanisms governing nerve destruction and disease progression. However, during the chronic course of leprosy neuropathy, Schwann cells can respond to and internalize both live and dead M. leprae and bacilli-derived antigens, and this may result in divergent cellular pathobiological responses. This may also distinctly contribute to tissue degeneration, failure to repair, inflammatory reactions, and nerve fibrosis, hallmarks of the disease. Therefore, the present study systematically searched for published studies on M. leprae-Schwann cell interaction in vitro to summarize the findings and provide a focused discussion of Schwann cell dynamics following challenge with leprosy bacilli.

13.
PLoS Negl Trop Dis ; 17(6): e0011383, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37276237

RESUMEN

BACKGROUND: Leprosy is caused by multiple interactions between Mycobacterium leprae (M. leprae) and the host's peripheral nerve cells. M. leprae primarily invades Schwann cells, causing nerve damage and consequent development of disabilities. Despite its long history, the pathophysiological mechanisms of nerve damage in the lepromatous pole of leprosy remain poorly understood. This study used the findings of 18F-FDG PET/CT on the peripheral nerves of eight lepromatous patients to evaluate the degree of glucose uptake by peripheral nerves and compared them with clinical, electrophysiological, and histopathological evaluations. METHODS: Eight patients with lepromatous leprosy were included in this study. Six patients were evaluated up to three months after leprosy diagnosis using neurological examination, nerve conduction study, 18F-FDG PET/CT, and nerve biopsy. Two others were evaluated during an episode of acute neuritis, with clinical, neurophysiological, and PET-CT examinations to compare the images with the first six. RESULTS: Initially, six patients already had signs of peripheral nerve injury, regardless of symptoms; however, they did not present with signs of neuritis, and there was little or no uptake of 18F-FDG in the clinically and electrophysiologically affected nerves. Two patients with signs of acute neuritis had 18F-FDG uptake in the affected nerves. CONCLUSIONS: 18F-FDG uptake correlates with clinical neuritis in lepromatous leprosy patients but not in silent neuritis patients. 18F-FDG PET-CT could be a useful tool to confirm neuritis, especially in cases that are difficult to diagnose, such as for the differential diagnosis between a new episode of neuritis and chronic neuropathy.


Asunto(s)
Lepra Lepromatosa , Lepra , Neuritis , Enfermedades del Sistema Nervioso Periférico , Humanos , Lepra Lepromatosa/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Fluorodesoxiglucosa F18 , Lepra/microbiología , Mycobacterium leprae , Neuritis/diagnóstico , Neuritis/microbiología , Neuritis/patología , Inflamación , Glucosa
15.
Mem Inst Oswaldo Cruz ; 107 Suppl 1: 143-9, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23283465

RESUMEN

We analysed 16 variable number tandem repeats (VNTR) and three single-nucleotide polymorphisms (SNP) in Mycobacterium leprae present on 115 Ziehl-Neelsen (Z-N)-stained slides and in 51 skin biopsy samples derived from leprosy patients from Ceará (n = 23), Pernambuco (n = 41), Rio de Janeiro (n = 22) and Rondônia (RO) (n = 78). All skin biopsies yielded SNP-based genotypes, while 48 of the samples (94.1%) yielded complete VNTR genotypes. We evaluated two procedures for extracting M. leprae DNA from Z-N-stained slides: the first including Chelex and the other combining proteinase and sodium dodecyl sulfate. Of the 76 samples processed using the first procedure, 30.2% were positive for 16 or 15 VNTRs, whereas of the 39 samples processed using the second procedure, 28.2% yielded genotypes defined by at least 10 VNTRs. Combined VNTR and SNP analysis revealed large variability in genotypes, but a high prevalence of SNP genotype 4 in the Northeast Region of Brazil. Our observation of two samples from RO with an identical genotype and seven groups with similar genotypes, including four derived from residents of the same state or region, suggest a tendency to form groups according to the origin of the isolates. This study demonstrates the existence of geographically related M. leprae genotypes and that Z-N-stained slides are an alternative source for M. leprae genotyping.


Asunto(s)
ADN Bacteriano/análisis , Variación Genética , Lepra/microbiología , Mycobacterium leprae/genética , Técnicas de Tipificación Bacteriana , Biopsia , Brasil , Genotipo , Humanos , Filogenia , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Coloración y Etiquetado
16.
Lancet Reg Health Am ; 10: 100221, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35309089

RESUMEN

Background: Brazil has been severely impacted by COVID-19 pandemics that is aggravated by the absence of a scientifically-driven coordinated informative campaign and the interference in public health management, which ultimately affected health measures to avoid SARS-CoV2 spread. The decentralization and resultant conflicts in disease control activities produced different protection behaviours and local government measures. In the present study, we investigated how political partisanship and socio-economic factors determined the outcome of COVID-19 at the local level in Brazil. Methods: A retrospective study of COVID-19 deaths was carried out using mortality databases between Feb 2020, and Jun 2021 for the 5570 Brazilian municipalities. Socio-economic parameters including city categories, income and inequality indexes, health service quality and partisanship, assessed by the result of the second round of the 2018 Brazilian presidential elections, were included. Regression tree analysis was carried out to identify the statistical significance and conditioning relationships of variables. Findings: Municipalities that supported then-candidate Jair Bolsonaro in the 2018 elections were those that had the worst COVID-19 mortality rates, mainly during the second epidemic wave of 2021. This pattern was observed even considering structural inequalities among cities. Interpretation: In general, the first phase of the pandemic hit large and central cities hardest, while the second wave mostly impacted Bolsonarian municipalities, where scientific denialism among the population was stronger. Negative effects of partisanship towards the right-wing on COVID-19 outcomes counterbalances favourable socioeconomic indexes in affluent Brazilian cities. Our results underscore the fragility of public health policies which were undermined by the scientific denialism of right-wing supporters in Brazil. Funding: International joint laboratories of Institute de Recherche pour le Développement, a partnership between the University of Brasília and the Oswaldo Cruz Foundation (LMI-Sentinela - UnB - Fiocruz - IRD), Coordination for the Improvement of Higher Education Personnel (CAPES), National Council for Scientific and Technological Development (CNPq).

17.
Front Microbiol ; 13: 918009, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35722339

RESUMEN

The initial infection by the obligate intracellular bacillus Mycobacterium leprae evolves to leprosy in a small subset of the infected individuals. Transmission is believed to occur mainly by exposure to bacilli present in aerosols expelled by infected individuals with high bacillary load. Mycobacterium leprae-specific DNA has been detected in the blood of asymptomatic household contacts of leprosy patients years before active disease onset, suggesting that, following infection, the bacterium reaches the lymphatic drainage and the blood of at least some individuals. The lower temperature and availability of protected microenvironments may provide the initial conditions for the survival of the bacillus in the airways and skin. A subset of skin-resident macrophages and the Schwann cells of peripheral nerves, two M. leprae permissive cells, may protect M. leprae from effector cells in the initial phase of the infection. The interaction of M. leprae with these cells induces metabolic changes, including the formation of lipid droplets, that are associated with macrophage M2 phenotype and the production of mediators that facilitate the differentiation of specific T cells for M. leprae-expressed antigens to a memory regulatory phenotype. Here, we discuss the possible initials steps of M. leprae infection that may lead to active disease onset, mainly focusing on events prior to the manifestation of the established clinical forms of leprosy. We hypothesize that the progressive differentiation of T cells to the Tregs phenotype inhibits effector function against the bacillus, allowing an increase in the bacillary load and evolution of the infection to active disease. Epigenetic and metabolic mechanisms described in other chronic inflammatory diseases are evaluated for potential application to the understanding of leprosy pathogenesis. A potential role for post-exposure prophylaxis of leprosy in reducing M. leprae-induced anti-inflammatory mediators and, in consequence, Treg/T effector ratios is proposed.

18.
J Biol Chem ; 285(44): 34086-96, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-20739294

RESUMEN

Mycobacterium leprae (ML), the etiologic agent of leprosy, mainly affects the skin and peripheral nerves, leading to demyelization and loss of axonal conductance. Schwann cells (SCs) are the main cell population infected by ML in the nerves, and infection triggers changes in the SC phenotype from a myelinated to a nonmyelinated state. In the present study, we show that expression of 9-O-acetyl GD3, a ganglioside involved in cellular anti-apoptotic signaling and nerve regeneration, increases in SCs following infection with ML. Observation by confocal microscopy together with coimmunoprecipitation suggested that this ganglioside participates in ML attachment and internalization by SC. Immunoblockage of 9-O-acetyl GD3 in vitro significantly reduced adhesion of ML to SC surfaces. Finally, we show that activation of the MAPK (ERK 1/2) pathway and SC proliferation, two known effects of ML on SCs that result in demyelization, are significantly reduced when the 9-O-acetyl GD3 ganglioside is immunoblocked. Taken together, these data suggest the involvement of 9-O-acetyl GD3 in ML infection on SCs.


Asunto(s)
Gangliósidos/metabolismo , Lepra/microbiología , Mycobacterium leprae/metabolismo , Células de Schwann/metabolismo , Células de Schwann/microbiología , Animales , Apoptosis , Humanos , Integrina beta1/metabolismo , Lepra/metabolismo , Masculino , Ratones , Ratones Desnudos , Modelos Biológicos , Vaina de Mielina/química , Neuronas/metabolismo , Transducción de Señal
19.
Front Immunol ; 12: 647385, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777045

RESUMEN

Leprosy is an infectious disease that remains endemic in approximately 100 developing countries, where about 200,000 new cases are diagnosed each year. Moreover, multibacillary leprosy, the most contagious form of the disease, has been detected at continuously higher rates among Brazilian elderly people. Due to the so-called immunosenescence, characterized by several alterations in the quality of the immune response during aging, this group is more susceptible to infectious diseases. In view of such data, the purpose of our work was to investigate if age-related alterations in the immune response could influence the pathogenesis of leprosy. As such, we studied 87 individuals, 62 newly diagnosed and untreated leprosy patients distributed according to the age range and to the clinical forms of the disease and 25 healthy volunteers, who were studied as controls. The frequency of senescent and memory CD8+ leukocytes was assessed by immunofluorescence of biopsies from cutaneous lesions, while the serum levels of IgG anti-CMV antibodies were analyzed by chemiluminescence and the gene expression of T cell receptors' inhibitors by RT-qPCR. We noted an accumulation of memory CD8+ T lymphocytes, as well as reduced CD8+CD28+ cell expression in skin lesions from elderly patients, when compared to younger people. Alterations in LAG3 and PDCD1 gene expression in cutaneous lesions of young MB patients were also observed, when compared to elderly patients. Such data suggest that the age-related alterations of T lymphocyte subsets can facilitate the onset of leprosy in elderly patients, not to mention other chronic inflammatory diseases.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Senescencia Celular/inmunología , Memoria Inmunológica , Inmunosenescencia/inmunología , Lepra/inmunología , Mycobacterium leprae , Enfermedades de la Piel/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , Antígenos CD/genética , Estudios de Casos y Controles , Citomegalovirus/inmunología , Femenino , Expresión Génica , Humanos , Inmunoglobulina G/sangre , Lepra/sangre , Lepra/microbiología , Lepra/patología , Masculino , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/genética , Piel/inmunología , Piel/patología , Enfermedades de la Piel/sangre , Enfermedades de la Piel/microbiología , Enfermedades de la Piel/patología , Adulto Joven , Proteína del Gen 3 de Activación de Linfocitos
20.
PLoS Negl Trop Dis ; 15(3): e0009214, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33690671

RESUMEN

BACKGROUND: Leprosy continues to be a public health problem in Brazil. Furthermore, detection rates in elderly people have increased, particularly those of multibacillary (L-Lep) patients, who are responsible for transmitting M. leprae. Part of the decline in physiological function during aging is due to increased oxidative damage and change in T cell subpopulations, which are critical in defense against the disease. It is not still clear how age-related changes like those related to oxidation affect elderly people with leprosy. The aim of this work was to verify whether the elderly leprosy patients have higher ROS production and how it can impact the evolution of leprosy. METHODOLOGY/PRINCIPAL FINDINGS: 87 leprosy patients, grouped according to age range and clinical form of leprosy, and 25 healthy volunteers were analyzed. Gene expression analysis of antioxidant and oxidative burst enzymes were performed in whole blood using Biomark's microfluidic-based qPCR. The same genes were evaluated in skin lesion samples by RT-qPCR. The presence of oxidative damage markers (carbonylated proteins and 4-hydroxynonenal) was analyzed by a DNPH colorimetric assay and immunofluorescence. Carbonylated protein content was significantly higher in elderly compared to young patients. One year after multidrug therapy (MDT) discharge and M. leprae clearance, oxidative damage increased in young L-Lep patients but not in elderly ones. Both elderly T and L-Lep patients present higher 4-HNE in cutaneous lesions than the young, mainly surrounding memory CD8+ T cells. Furthermore, young L-Lep demonstrated greater ability to neutralize ROS compared to elderly L-Lep patients, who presented lower gene expression of antioxidant enzymes, mainly glutathione peroxidase. CONCLUSIONS/SIGNIFICANCE: We conclude that elderly patients present exacerbated oxidative damage both in blood and in skin lesions and that age-related changes can be an important factor in leprosy immunopathogenesis. Ultimately, elderly patients could benefit from co-supplementation of antioxidants concomitant to MDT, to avoid worsening of the disease.


Asunto(s)
Leprostáticos/uso terapéutico , Lepra/patología , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento , Aldehídos , Antioxidantes , Carga Bacteriana , Brasil , Estudios de Casos y Controles , Quimioterapia Combinada , Femenino , Humanos , Leprostáticos/administración & dosificación , Masculino , Persona de Mediana Edad , Mycobacterium leprae , Estrés Oxidativo , Carbonilación Proteica , Piel/metabolismo , Piel/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA