Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Calcif Tissue Int ; 112(4): 403-421, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36422682

RESUMEN

Src homology-2 domain-containing phosphatase 2 (SHP2) is a ubiquitously expressed phosphatase that is vital for skeletal development and maintenance of chondrocytes, osteoblasts, and osteoclasts. Study of SHP2 function in small animal models has led to insights in phenotypes observed in SHP2-mutant human disease, such as Noonan syndrome. In recent years, allosteric SHP2 inhibitors have been developed to specifically target the protein in neoplastic processes. These inhibitors are highly specific and have great potential for disease modulation in cancer and other pathologies, including bone disorders. In this review, we discuss the importance of SHP2 and related signaling pathways (e.g., Ras/MEK/ERK, JAK/STAT, PI3K/Akt) in skeletal development. We review rodent models of pathologic processes caused by germline mutations that activate SHP2 enzymatic activity, with a focus on the skeletal phenotype seen in these patients. Finally, we discuss SHP2 inhibitors in development and their potential for disease modulation in these genetic diseases, particularly as it relates to the skeleton.


Asunto(s)
Neoplasias , Fosfatidilinositol 3-Quinasas , Animales , Humanos , Transducción de Señal , Esqueleto , Esternón/patología , Mutación
2.
Orthod Craniofac Res ; 26(3): 415-424, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36458927

RESUMEN

OBJECTIVES: Antidepressants, specifically Selective Serotonin Re-uptake Inhibitors (SSRIs), that alter serotonin metabolism are currently the most commonly prescribed drugs for the treatment of depression. There is some evidence to suggest these drugs contribute to birth defects. As jaw development is often altered in craniofacial birth defects, the purpose of this study was to interrogate the effects of in utero SSRI exposure in a preclinical model of mandible development. MATERIALS AND METHODS: Wild-type C57BL6 mice were used to produce litters that were exposed in utero to an SSRI, Citalopram (500 µg/day). Murine mandibles from P15 pups were analysed for a change in shape and composition. RESULTS: Analysis indicated an overall shape change with total mandibular length and ramus height being shorter in exposed pups as compared to controls. Histomorphometric analysis revealed that first molar length was longer in exposed pups while third molar length was shorter in exposed as compared to control. Histological investigation of molars and surrounding periodontium revealed no change in collagen content of the molar in exposed pups, some alteration in collagen composition in the periodontium, increased alkaline phosphatase in molars and periodontium and decreased mesenchymal cell marker presence in exposed mandibles. CONCLUSION: The results of this study reveal SSRI exposure may interrupt mandible growth as well as overall dental maturation in a model of development giving insight into the expectation that children exposed to SSRIs may require orthodontic intervention.


Asunto(s)
Inhibidores Selectivos de la Recaptación de Serotonina , Serotonina , Animales , Ratones , Inhibidores Selectivos de la Recaptación de Serotonina/efectos adversos , Serotonina/metabolismo , Ratones Endogámicos C57BL , Citalopram/efectos adversos , Mandíbula/metabolismo
3.
Stem Cells ; 39(11): 1457-1477, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34224636

RESUMEN

Currently, there is no cure for osteogenesis imperfecta (OI)-a debilitating pediatric skeletal dysplasia. Herein we show that hematopoietic stem cell (HSC) therapy holds promise in treating OI. Using single-cell HSC transplantation in lethally irradiated oim/oim mice, we demonstrate significant improvements in bone morphometric, mechanics, and turnover parameters. Importantly, we highlight that HSCs cause these improvements due to their unique property of differentiating into osteoblasts/osteocytes, depositing normal collagen-an attribute thus far assigned only to mesenchymal stem/stromal cells. To confirm HSC plasticity, lineage tracing was done by transplanting oim/oim with HSCs from two specific transgenic mice-VavR, in which all hematopoietic cells are GFP+ and pOBCol2.3GFP, where GFP is expressed only in osteoblasts/osteocytes. In both models, transplanted oim/oim mice demonstrated GFP+ HSC-derived osteoblasts/osteocytes in bones. These studies unequivocally establish that HSCs differentiate into osteoblasts/osteocytes, and HSC transplantation can provide a new translational approach for OI.


Asunto(s)
Osteogénesis Imperfecta , Animales , Modelos Animales de Enfermedad , Células Madre Hematopoyéticas , Humanos , Ratones , Ratones Transgénicos , Osteoblastos , Osteogénesis , Osteogénesis Imperfecta/terapia
4.
Am J Physiol Heart Circ Physiol ; 320(2): H604-H612, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33306449

RESUMEN

In human heart failure and in murine hearts with left-ventricular pressure overload (LVPO), increases in fibrosis are associated with increases in myocardial stiffness. Secreted protein acidic and rich in cysteine (SPARC) is shown to be necessary for both cardiac fibrosis and increases in myocardial stiffness in response to LVPO; however, cellular sources of cardiac SPARC are incompletely defined. Irradiation and bone marrow transfer were undertaken to test the hypothesis that SPARC expression by bone marrow-derived cells is an important mediator of fibrosis in LVPO. In recipient SPARC-null mice transplanted with donor wild-type (WT) bone marrow and subjected to LVPO, levels of fibrosis similar to that of WT mice were found despite the lack of SPARC expression by resident cells. In recipient WT mice with donor SPARC-null bone marrow, significantly less fibrosis versus that of WT mice was found despite the expression of SPARC by resident cells. Increases in myocardial stiffness followed a similar pattern to that of collagen deposition. Myocardial macrophages were significantly reduced in SPARC-null mice with LVPO versus that of WT mice. Recipient SPARC-null mice transplanted with donor WT bone marrow exhibited an increase in cardiac macrophages versus that of SPARC-null LVPO and donor WT mice with recipient SPARC-null bone marrow. Expression of vascular cellular adhesion molecule (VCAM), a previously identified binding partner of SPARC, was assessed in all groups and with the exception of WT mice, increases in VCAM immunoreactivity with LVPO were observed. However, no differences in VCAM expression between bone marrow transplant groups were noted. In conclusion, SPARC expression by bone marrow-derived cells was critical for fibrotic deposition of collagen and influenced the expansion of myocardial macrophages in response to LVPO.NEW & NOTEWORTHY Myocardial fibrosis and the resultant increases in LV and myocardial stiffness represent pivotal consequences of chronic pressure overload (PO). In this study, a murine model of cardiac fibrosis induced by PO was used to demonstrate a critical function of SPARC in bone marrow-derived cells that drives cardiac fibrosis and increases in cardiac macrophages.


Asunto(s)
Presión Sanguínea , Cardiomegalia/metabolismo , Miocardio/metabolismo , Osteonectina/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Colágenos Fibrilares/metabolismo , Fibrosis , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Miocardio/patología , Osteonectina/genética , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
5.
Am J Physiol Heart Circ Physiol ; 319(2): H331-H340, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32589444

RESUMEN

Mechanisms that contribute to myocardial fibrosis, particularly in response to left ventricular pressure overload (LVPO), remain poorly defined. To test the hypothesis that a myocardial-specific profile of secreted factors is produced in response to PO, levels of 44 factors implicated in immune cell recruitment and function were assessed in a murine model of cardiac hypertrophy and compared with levels produced in a model of pulmonary fibrosis (PF). Mice subjected to PO were assessed at 1 and 4 wk. Protein from plasma, LV, lungs, and kidneys were analyzed by specific protein array analysis in parallel with protein from mice subjected to silica-instilled PF. Of the 44 factors assessed, 13 proteins were elevated in 1-wk PO myocardium, whereas 18 proteins were found increased in fibrotic lung. Eight of those increased in 1-wk LVPO were not found to be increased in fibrotic lungs (CCL-11, CCL-12, CCL-17, CCL-19, CCL-21, CCL-22, IL-16, and VEGF). Additionally, six factors were increased in plasma of 1-wk LVPO in the absence of increases in myocardial levels. In contrast, in mice with PF, no factors were found increased in plasma that were not elevated in lung tissue. Of those factors increased at 1 wk, only TIMP-1 remained elevated at 4 wk of LVPO. Immunohistochemistry of myocardial vasculature at 1 and 4 wk revealed similar amounts of total vasculature; however, evidence of activated endothelium was observed at 1 wk and, to a lesser extent, at 4 wk LVPO. In conclusion, PO myocardium generated a unique signature of cytokine expression versus that of fibrotic lung.NEW & NOTEWORTHY Myocardial fibrosis and the resultant increases in myocardial stiffness represent pivotal consequences of chronic pressure overload (PO). In this study, cytokine profiles produced in a murine model of cardiac fibrosis induced by PO were compared with those produced in response to silica-induced lung fibrosis. A unique profile of cardiac tissue-specific and plasma-derived factors generated in response to PO are reported.


Asunto(s)
Citocinas/sangre , Hipertrofia Ventricular Izquierda/metabolismo , Mediadores de Inflamación/sangre , Pulmón/metabolismo , Miocardio/metabolismo , Fibrosis Pulmonar/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Modelos Animales de Enfermedad , Femenino , Fibrosis , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Miocardio/patología , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/fisiopatología
6.
Inhal Toxicol ; 32(5): 189-199, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32448007

RESUMEN

Objective: The lungs are uniquely exposed to the external environment. Sand and dust exposures in desert regions are common among deployed soldiers. A significant number of Veterans deployed to the Middle East report development of respiratory disorders and diseases.Materials and methods: Sand collected from Fallujah, Iraq and Kandahar, Afghanistan combat zones was analyzed and compared to a sand sample collected from an historic United States (U.S.) battle region (Fort Johnson, James Island, SC, Civil War battle site). Sand samples were analyzed to determine the physical and elemental characteristics that may have the potential to contribute to development of respiratory disease.Results: Using complementary scanning electron microscopy (SEM) imaging and analysis, and inductively coupled plasma mass spectrometry (ICP-MS), it was determined that Iraq sand contained elevated levels of calcium and first row transition metals versus Afghanistan and U.S. sand. Iraq sand particle texture was smooth and round, and particles were considerably smaller than Afghanistan sand. Afghanistan sand was elevated in rare earth metals versus Iraq or U.S. sands and had sharp edge features and larger particle size than Iraq sand.Conclusions: These data demonstrate significant differences in Iraq and Afghanistan sand particle size and characteristics. Middle East sands contained elevated levels of elements that have been associated with respiratory disease versus control site sand, suggesting the potential of sand/dust storm exposure to promote adverse respiratory symptoms. Data also demonstrate the potential for variation based on geographical region or site of exposure. The data generated provide baseline information that will be valuable in designing future exposure studies.


Asunto(s)
Metales/análisis , Arena/química , Afganistán , Conflictos Armados , Irak , Tamaño de la Partícula , South Carolina , Propiedades de Superficie
7.
Wound Repair Regen ; 27(4): 335-344, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30805987

RESUMEN

Large bone injuries, defects, and chronic wounds present a major problem for medicine. Several therapeutic strategies are used clinically to precipitate bone including a combination therapy delivering osteoinductive bone morphogenetic protein 2 (rhBMP-2) via an osteoconductive scaffold (absorbable collagen sponge [ACS], i.e., INFUSE). Adverse side effects reportedly associated with rhBMP2 administration include rampant inflammation and clinical failures. Although acute inflammation is necessary for proper healing in bone, inflammatory cascade dysregulation can result in sustained tissue damage and poor healing. We hypothesized that a subclinical dose of rhBMP2 modeled in the murine calvarial defect would not precipitate alterations to inflammatory markers during acute phases of bone wound healing. We utilized the 5 mm critical size calvarial defect in C57BL6 wild-type mice which were subsequently treated with ACS and a subclinical dose of rhBMP2 shown to be optimal for healing. Three and 7-day postoperative time points were used to assess the role that rhBMP-2 plays in modulating inflammation vs. ACS alone by cytokine array and histological interrogation. Data revealed that rhBMP-2 delivery resulted in substantial modulation of several markers associated with inflammation, most of which decreased to levels similar to control by the 7-day time point. Additionally, while rhBMP-2 administration increased macrophage response, this peptide had a little noticeable effect on traditional markers of macrophage polarization (M1-iNOS, M2-Arg1). These results suggest that rhBMP-2 delivered at a lower dose does not precipitate rampant inflammation. Thus, an assessment of dosing for rhBMP-2 therapies may lead to better healing outcomes and less surgical failure.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Colágeno/farmacología , Fracturas Óseas/patología , Inflamación/patología , Osteogénesis/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Implantes Absorbibles , Animales , Modelos Animales de Enfermedad , Fracturas Óseas/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Osteogénesis/fisiología , Andamios del Tejido , Cicatrización de Heridas/fisiología
8.
Mediators Inflamm ; 2019: 1648614, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31015794

RESUMEN

Chronic inflammation is evident in the adipose tissue and periphery of patients with obesity, as well as mouse models of obesity. T cell subsets in obese adipose tissue are skewed towards Th1- and Th17-associated phenotypes and their secreted cytokines contribute to obesity-associated inflammation. Our lab recently identified a novel, myeloid-derived CD45+DDR2+ cell subset that modulates T cell activity. The current study sought to determine how these myeloid-derived CD45+DDR2+ cells are altered in the adipose tissue and peripheral blood of preobese mice and how this population modulates T cell activity. C57BL/6 mice were fed with a diet high in milkfat (60%·kcal, HFD) ad libitum until a 20% increase in total body weight was reached, and myeloid-derived CD45+DDR2+ cells and CD4+ T cells in visceral adipose tissue (VAT), mammary gland-associated adipose tissue (MGAT), and peripheral blood (PB) were phenotypically analyzed. Also analyzed was whether mediators from MGAT-primed myeloid-derived CD45+DDR2+ cells stimulate normal CD4+ T cell cytokine production. A higher percentage of myeloid-derived CD45+DDR2+ cells expressed the activation markers MHC II and CD80 in both VAT and MGAT of preobese mice. CD4+ T cells were preferentially skewed towards Th1- and Th17-associated phenotypes in the adipose tissue and periphery of preobese mice. In vitro, MGAT from HFD-fed mice triggered myeloid-derived CD45+DDR2+ cells to induce CD4+ T cell IFN-γ and TNF-α production. Taken together, this study shows that myeloid-derived CD45+DDR2+ cells express markers of immune activation and suggests that they play an immune modulatory role in the adipose tissue of preobese mice.


Asunto(s)
Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Dieta Alta en Grasa/efectos adversos , Receptor con Dominio Discoidina 2/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Animales , Células Cultivadas , Femenino , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL
9.
J Mol Cell Cardiol ; 119: 51-63, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29680681

RESUMEN

AIMS: Following an acute myocardial infarction (MI) the extracellular matrix (ECM) undergoes remodeling in order to prevent dilation of the infarct area and maintain cardiac output. Excessive and prolonged inflammation following an MI exacerbates adverse ventricular remodeling. Macrophages are an integral part of the inflammatory response that contribute to this remodeling. Treatment with histone deacetylase (HDAC) inhibitors preserves LV function and myocardial remodeling in the post-MI heart. This study tested whether inhibition of HDAC activity resulted in preserving post-MI LV function through the regulation of macrophage phenotype and early resolution of inflammation. METHODS AND RESULTS: HDAC inhibition does not affect the recruitment of CD45+ leukocytes, CD45+/CD11b+ inflammatory monocytes or CD45+/CD11b+CD86+ inflammatory macrophages for the first 3 days following infarct. Further, HDAC inhibition does not change the high expression level of the inflammatory cytokines in the first days following MI. However, by day 7, there was a significant reduction in the levels of CD45+/Cd11b+ and CD45+/CD11b+/CD86+ cells with HDAC inhibition. Remarkably, HDAC inhibition resulted in the dramatic increase in the recruitment of CD45+/CD11b+/CD206+ alternatively activated macrophages as early as 1 day which remained significantly elevated until 5 days post-MI. qRT-PCR revealed that HDAC inhibitor treatment shifts the cytokine and chemokine environment towards an M2 phenotype with upregulation of M2 markers at 1 and 5 days post-MI. Importantly, HDAC inhibition correlates with significant preservation of both LV ejection fraction and end-diastolic volume and is associated with a significant increase in micro-vessel density in the border zone at 14 days post-MI. CONCLUSION: Inhibition of HDAC activity result in the early recruitment of reparative CD45+/CD11b+/CD206+ macrophages in the post-MI heart and correlates with improved ventricular function and remodeling. This work identifies a very promising therapeutic opportunity to manage macrophage phenotype and enhance resolution of inflammation in the post-MI heart.


Asunto(s)
Histona Desacetilasa 1/genética , Inhibidores de Histona Desacetilasas/administración & dosificación , Inflamación/tratamiento farmacológico , Infarto del Miocardio/tratamiento farmacológico , Cicatrización de Heridas/genética , Animales , Antígeno B7-2/metabolismo , Antígeno CD11b/metabolismo , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Corazón/crecimiento & desarrollo , Corazón/fisiopatología , Histona Desacetilasa 1/antagonistas & inhibidores , Humanos , Inflamación/genética , Inflamación/fisiopatología , Antígenos Comunes de Leucocito/metabolismo , Leucocitos/metabolismo , Macrófagos/metabolismo , Ratones , Monocitos/efectos de los fármacos , Infarto del Miocardio/genética , Infarto del Miocardio/fisiopatología , Neovascularización Fisiológica/genética , Remodelación Ventricular/efectos de los fármacos , Remodelación Ventricular/genética , Cicatrización de Heridas/efectos de los fármacos
10.
Am J Physiol Heart Circ Physiol ; 315(1): H92-H100, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29522370

RESUMEN

Myocardial fibrosis and the resultant increases in left ventricular stiffness represent pivotal consequences of chronic pressure overload (PO) that impact both functional capacity and the rates of morbid and mortal events. However, the time course and cellular mechanisms that underlie PO-induced fibrosis have not been completely defined. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that has been shown to be required for insoluble collagen deposition and increased myocardial stiffness in response to PO in mice. As macrophages are associated with increases in fibrillar collagen, the hypothesis that macrophages represent a source of increased SPARC production in the PO myocardium was tested. The time course of changes in the myocardial macrophage population was compared with changes in procollagen type I mRNA, production of SPARC, fibrillar collagen accumulation, and diastolic stiffness. In PO hearts, mRNA encoding collagen type I was increased at 3 days, whereas increases in levels of total collagen protein did not occur until 1 wk and were followed by increases in insoluble collagen at 2 wk. Increases in muscle stiffness were not detected before increases in insoluble collagen content (>1 wk). Significant increases in myocardial macrophages that coincided with increased SPARC were found but did not coincide with increases in mRNA encoding collagen type I. Furthermore, immunohistochemistry and flow cytometry identified macrophages as a cellular source of SPARC. We conclude that myocardial macrophages play an important role in the time-dependent increases in SPARC that enhance postsynthetic collagen processing, insoluble collagen content, and myocardial stiffness and contribute to the development of fibrosis. NEW & NOTEWORTHY Myocardial fibrosis and the resultant increases in left ventricular and myocardial stiffness represent pivotal consequences of chronic pressure overload. In this study a murine model of cardiac fibrosis induced by pressure overload was used to establish a time course of collagen expression, collagen deposition, and cardiac macrophage expansion.


Asunto(s)
Colágeno/metabolismo , Macrófagos/metabolismo , Miocardio/patología , Osteonectina/metabolismo , Animales , Colágeno/genética , Femenino , Fibrosis , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Osteonectina/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
J Transl Med ; 16(1): 321, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30463618

RESUMEN

BACKGROUND: Bone is a highly vascularized and resilient organ with innate healing abilities, however some bone injuries overwhelm these attributes and require intervention, such as bone tissue engineering strategies. Combining biomaterials and growth factors, such as bone morphogenetic protein 2 (BMP2), is one of the most commonly used tissue engineering strategies. However, use of BMP2 has been correlated with negative clinical outcomes including aberrant inflammatory response, poor quality bone, and ectopic bone. METHODS: In the present study, a novel poly-n-acetyl glucosamine (pGlcNAc, trade name Talymed) scaffold was utilized in addition to the commonly used acellular collagen sponge (ACS) BMP2 delivery system in a murine calvarial defect model to investigate whether the innate properties of Talymed can reduce the noted negative bone phenotypes associated with BMP2 treatment. RESULTS: Comparison of murine calvarial defect healing between ACS with and without Talymed revealed that there was no measurable healing benefit for the combined treatment. Healing was most effective utilizing the traditional acellular collagen sponge with a reduced dose of BMP2. CONCLUSIONS: The results of this investigation lead to the conclusion that excessive dosing of BMP2 may be responsible for the negative clinical side effects observed with this bone tissue engineering strategy. Rather than augmenting the currently used ACS BMP2 bone wound healing strategy with an additional anti-inflammatory scaffold, reducing the dose of BMP2 used in the traditional delivery system results in optimal healing without the published negative side effects of BMP2 treatment.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Colágeno/farmacología , Nanofibras/química , Cráneo/patología , Andamios del Tejido/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Femenino , Masculino , Ratones Endogámicos C57BL , Cráneo/diagnóstico por imagen , Cráneo/efectos de los fármacos , Microtomografía por Rayos X
12.
Cytotherapy ; 20(11): 1371-1380, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30340982

RESUMEN

BACKGROUND AIMS: Previous studies identified a circulating human osteoblastic population that expressed osteocalcin (OCN), increased following fracture and pubertal growth, and formed mineralized colonies in vitro and bone in vivo. A subpopulation expressed CD34, a hematopoietic/endothelial marker. These findings led to our hypothesis that hematopoietic-derived CD34+OCN+ cells exist in the circulation of mice and are modulated after fracture. METHODS: Flow cytometry was used to identify CD34+OCN+ cells in male B6.SJL-PtprcaPepcb/BoyJ and Vav-Cre/mTmG (VavR) mice. Non-stabilized tibial fractures were created by three-point bend. Fractures were longitudinally imaged by micro-computed tomography, and immunofluorescent staining was used to evaluate CD34+OCN+ cells within fracture callus. AMD3100 (10 mg/kg) was injected subcutaneously for 3 days and the CD34+OCN+ population was evaluated by flow cytometry. RESULTS: Circulating CD34+OCN+ cells were identified in mice and confirmed to be of hematopoietic origin (CD45+; Vav1+) using two mouse models. Both circulating and bone marrow-derived CD34+OCN+ cells peaked three weeks post-non-stabilized tibial fracture, suggesting association with cartilage callus transition to bone and early mineralization. Co-expression of CD34 and OCN in the fracture callus at two weeks post-fracture was observed. By three weeks, there was 2.1-fold increase in number of CD34+OCN+ cells, and these were observed throughout the fracture callus. AMD3100 altered CD34+OCN+ cell levels in peripheral blood and bone marrow. DISCUSSION: Together, these data demonstrate a murine CD34+OCN+ circulating population that may be directly involved in fracture repair. Future studies will molecularly characterize CD34+OCN+ cells, determine mechanisms regulating their contribution, and examine if their number correlates with improved fracture healing outcomes.


Asunto(s)
Antígenos CD34/metabolismo , Curación de Fractura/fisiología , Fracturas Óseas/patología , Osteoblastos/citología , Osteocalcina/metabolismo , Animales , Bencilaminas , Biomarcadores/sangre , Médula Ósea/efectos de los fármacos , Ciclamas , Modelos Animales de Enfermedad , Fracturas Óseas/diagnóstico por imagen , Compuestos Heterocíclicos/farmacología , Ratones Transgénicos , Osteoblastos/efectos de los fármacos , Osteoblastos/patología
13.
Mol Ther ; 24(11): 2000-2011, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27600399

RESUMEN

The peripheral auditory nerve (AN) carries sound information from sensory hair cells to the brain. The present study investigated the contribution of mouse and human hematopoietic stem cells (HSCs) to cellular diversity in the AN following the destruction of neuron cell bodies, also known as spiral ganglion neurons (SGNs). Exposure of the adult mouse cochlea to ouabain selectively killed type I SGNs and disrupted the blood-labyrinth barrier. This procedure also resulted in the upregulation of genes associated with hematopoietic cell homing and differentiation, and provided an environment conducive to the tissue engraftment of circulating stem/progenitor cells into the AN. Experiments were performed using both a mouse-mouse bone marrow transplantation model and a severely immune-incompetent mouse model transplanted with human CD34+ cord blood cells. Quantitative immunohistochemical analysis of recipient mice demonstrated that ouabain injury promoted an increase in the number of both HSC-derived macrophages and HSC-derived nonmacrophages in the AN. Although rare, a few HSC-derived cells in the injured AN exhibited glial-like qualities. These results suggest that human hematopoietic cells participate in remodeling of the AN after neuron cell body loss and that hematopoietic cells can be an important resource for promoting AN repair/regeneration in the adult inner ear.


Asunto(s)
Nervio Coclear/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Ouabaína/efectos adversos , Enfermedades del Nervio Vestibulococlear/terapia , Animales , Antígenos CD34/metabolismo , Diferenciación Celular , Nervio Coclear/lesiones , Trasplante de Células Madre de Sangre del Cordón Umbilical , Modelos Animales de Enfermedad , Sangre Fetal/inmunología , Trasplante de Células Madre Hematopoyéticas , Humanos , Ratones , Enfermedades del Nervio Vestibulococlear/inducido químicamente
14.
Dis Model Mech ; 17(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38131122

RESUMEN

Post-traumatic stress disorder (PTSD) is associated with osteopenia, osteoporosis and increased fracture risk in the clinical population. Yet, the development of preclinical models to study PTSD-induced bone loss remains limited. In this study, we present a previously unreported model of PTSD in adult female C57BL/6 mice, by employing inescapable foot shock and social isolation, that demonstrates high face and construct validity. A subset of mice exposed to this paradigm (i.e. PTSD mice) display long-term alterations in behavioral and inflammatory indices. Using three-dimensional morphometric calculations, cyclic reference point indentation (cRPI) testing and histological analyses, we find that PTSD mice exhibit loss of trabecular bone, altered bone material quality, and aberrant changes in bone tissue architecture and cellular activity. This adult murine model of PTSD exhibits clinically relevant changes in bone physiology and provides a valuable tool for investigating the cellular and molecular mechanisms underlying PTSD-induced bone loss.


Asunto(s)
Trastornos por Estrés Postraumático , Femenino , Ratones , Animales , Trastornos por Estrés Postraumático/complicaciones , Ratones Endogámicos C57BL , Fenotipo , Huesos , Modelos Animales de Enfermedad
15.
Breast Cancer Res ; 15(4): R70, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23971998

RESUMEN

INTRODUCTION: MicroRNAs are small non-coding RNAs that are involved in the post-transcriptional negative regulation of mRNAs. MicroRNA 510 (miR-510) was initially shown to have a potential oncogenic role in breast cancer by the observation of its elevated levels in human breast tumor samples when compared to matched non-tumor samples. Few targets have been identified for miR-510. However, as microRNAs function through the negative regulation of their direct targets, the identification of those targets is critical for the understanding of their functional role in breast cancer. METHODS: Breast cancer cell lines were transfected with pre-miR-510 or antisense miR-510 and western blotting and quantitative real time PCR were performed. Functional assays performed included cell growth, migration, invasion, colony formation, cytotoxicity and in vivo tumor growth. We performed a PCR assay to identify novel direct targets of miR-510. The study focused on peroxiredoxin 1 (PRDX1) as it was identified through our screen and was bioinformatically predicted to contain a miR-510 seed site in its 3' untranslated region (3'UTR). Luciferase reporter assays and site-directed mutagenesis were performed to confirm PRDX1 as a direct target. The Student's two-sided, paired t-test was used and a P-value less than 0.05 was considered significant. RESULTS: We show that miR-510 overexpression in non-transformed and breast cancer cells can increase their cell growth, migration, invasion and colony formation in vitro. We also observed increased tumor growth when miR-510 was overexpressed in vivo. We identified PRDX1 through a novel PCR screen and confirmed it as a direct target using luciferase reporter assays. The reintroduction of PRDX1 into breast cancer cell lines without its regulatory 3'UTR confirmed that miR-510 was mediating its migratory phenotype at least in part through the negative regulation of PRDX1. Furthermore, the PI3K/Akt pathway was identified as a positive regulator of miR-510 both in vitro and in vivo. CONCLUSIONS: In this study, we provide evidence to support a role for miR-510 as a novel oncomir. We show that miR-510 directly binds to the 3'UTR of PRDX1 and blocks its protein expression, thereby suppressing migration of human breast cancer cells. Taken together, these data support a pivotal role for miR-510 in breast cancer progression and suggest it as a potential therapeutic target in breast cancer patients.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Peroxirredoxinas/genética , Regiones no Traducidas 3' , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Oxidación-Reducción , Peroxirredoxinas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , Transducción de Señal , Carga Tumoral , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Blood Cells Mol Dis ; 51(1): 3-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23453528

RESUMEN

Over a decade ago, several preclinical transplantation studies suggested the striking concept of the tissue-reconstituting ability (often referred to as HSC plasticity) of hematopoietic stem cells (HSCs). While this heralded an exciting time of radically new therapies for disorders of many organs and tissues, the concept was soon mired in controversy and remained dormant for almost a decade. This commentary provides a concise review of evidence for HSC plasticity, including more recent findings based on single HSC transplantation in mouse and clinical transplantation studies. There is strong evidence for the concept that HSCs are pluripotent and are the source for the majority, if not all, of the cell types in our body. Also discussed are some biological and experimental issues that need to be considered in the future investigation of HSC plasticity.


Asunto(s)
Células Madre Hematopoyéticas/fisiología , Células Madre Pluripotentes/fisiología , Animales , Diferenciación Celular/fisiología , Linaje de la Célula , Enfermedades Genéticas Congénitas/terapia , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Humanos , Células Madre Pluripotentes/citología
17.
Blood Cells Mol Dis ; 50(1): 41-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22954476

RESUMEN

Repair of bone fracture requires recruitment and proliferation of stem cells with the capacity to differentiate to functional osteoblasts. Given the close association of bone and bone marrow (BM), it has been suggested that BM may serve as a source of these progenitors. To test the ability of hematopoietic stem cells (HSCs) to give rise to osteo-chondrogenic cells, we used a single HSC transplantation paradigm in uninjured bone and in conjunction with a tibial fracture model. Mice were lethally irradiated and transplanted with a clonal population of cells derived from a single enhanced green fluorescent protein positive (eGFP+) HSC. Analysis of paraffin sections from these animals showed the presence of eGFP+ osteocytes and hypertrophic chondrocytes. To determine the contribution of HSC-derived cells to fracture repair, non-stabilized tibial fracture was created. Paraffin sections were examined at 7 days, 2 weeks and 2 months after fracture and eGFP+ hypertrophic chondrocytes, osteoblasts and osteocytes were identified at the callus site. These cells stained positive for Runx-2 or osteocalcin and also stained for eGFP demonstrating their origin from the HSC. Together, these findings strongly support the concept that HSCs generate bone cells and suggest therapeutic potentials of HSCs in fracture repair.


Asunto(s)
Condrocitos/citología , Curación de Fractura , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Osteocitos/citología , Tibia/lesiones , Fracturas de la Tibia/terapia , Animales , Biomarcadores/metabolismo , Médula Ósea/fisiología , Diferenciación Celular , Condrocitos/fisiología , Condrogénesis , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Femenino , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Células Madre Hematopoyéticas/fisiología , Masculino , Ratones , Ratones Transgénicos , Osteocalcina/genética , Osteocalcina/metabolismo , Osteocitos/fisiología , Osteogénesis , Fracturas de la Tibia/metabolismo , Fracturas de la Tibia/patología
18.
Bone Rep ; 18: 101662, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36860797

RESUMEN

Osteoimmune studies have identified complement signaling as an important regulator of the skeleton. Specifically, complement anaphylatoxin receptors (i.e., C3aR, C5aR) are expressed on osteoblasts and osteoclasts, implying that C3a and/or C5a may be candidate mediators of skeletal homeostasis. The study aimed to determine how complement signaling influences bone modeling/remodeling in the young skeleton. Female C57BL/6J C3aR-/-C5aR-/- vs. wildtype and C3aR-/- vs. wildtype mice were examined at age 10 weeks. Trabecular and cortical bone parameters were analyzed by micro-CT. In situ osteoblast and osteoclast outcomes were determined by histomorphometry. Osteoblast and osteoclast precursors were assessed in vitro. C3aR-/-C5aR-/- mice displayed an increased trabecular bone phenotype at age 10 weeks. In vitro studies revealed C3aR-/-C5aR-/- vs. wildtype cultures had less bone-resorbing osteoclasts and increased bone-forming osteoblasts, which were validated in vivo. To determine whether C3aR alone was critical for the enhanced skeletal outcomes, wildtype vs. C3aR-/- mice were evaluated for osseous tissue outcomes. Paralleling skeletal findings in C3aR-/-C5aR-/- mice, C3aR-/- vs. wildtype mice had an enhanced trabecular bone volume fraction, which was attributed to increased trabecular number. There was elevated osteoblast activity and suppressed osteoclastic cells in C3aR-/- vs. wildtype mice. Furthermore, primary osteoblasts derived from wildtype mice were stimulated with exogenous C3a, which more profoundly upregulated C3ar1 and the pro-osteoclastic chemokine Cxcl1. This study introduces the C3a/C3aR signaling axis as a novel regulator of the young skeleton.

19.
Front Immunol ; 13: 830169, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651620

RESUMEN

Tumor-associated macrophages (TAMs) exert profound influence over breast cancer progression, promoting immunosuppression, angiogenesis, and metastasis. Neuropilin-2 (NRP2), consisting of the NRP2a and NRP2b isoforms, is a co-receptor for heparin-binding growth factors including VEGF-C and Class 3 Semaphorins. Selective upregulation in response to environmental stimuli and independent signaling pathways endow the NRP2 isoforms with unique functionality, with NRP2b promoting increased Akt signaling via receptor tyrosine kinases including VEGFRs, MET, and PDGFR. Although NRP2 has been shown to regulate macrophage/TAM biology, the role of the individual NRP2a/NRP2b isoforms in TAMs has yet to be evaluated. Using transcriptional profiling and spectral flow cytometry, we show that NRP2 isoform expression was significantly higher in TAMs from murine mammary tumors. NRP2a/NRP2b levels in human breast cancer metastasis were dependent upon the anatomic location of the tumor and significantly correlated with TAM infiltration in both primary and metastatic breast cancers. We define distinct phenotypes of NRP2 isoform-expressing TAMs in mouse models of breast cancer and within malignant pleural effusions from breast cancer patients which were exclusive of neuropilin-1 expression. Genetic depletion of either NRP2 isoform in macrophages resulted in a dramatic reduction of LPS-induced IL-10 production, defects in phagosomal processing of apoptotic breast cancer cells, and increase in cancer cell migration following co-culture. By contrast, depletion of NRP2b, but not NRP2a, inhibited production of IL-6. These results suggest that NRP2 isoforms regulate both shared and unique functionality in macrophages and are associated with distinct TAM subsets in breast cancer.


Asunto(s)
Neoplasias de la Mama , Neuropilina-2 , Animales , Neoplasias de la Mama/patología , Femenino , Humanos , Ratones , Neuropilina-1/genética , Neuropilina-2/genética , Neuropilina-2/metabolismo , Isoformas de Proteínas , Macrófagos Asociados a Tumores
20.
Prostate ; 71(16): 1723-35, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21446014

RESUMEN

BACKGROUND: Ets is a large family of transcriptional regulators with functions in most biological processes. While the Ets family gene, prostate-derived epithelial factor (PDEF), is expressed in epithelial tissues, PDEF protein expression has been found to be reduced or lost during cancer progression. The goal of this study was to examine the mechanism for and biologic impact of altered PDEF expression in prostate cancer. METHODS: PDEF protein expression of prostate specimens was examined by immunohistochemistry. RNA and protein expression in cell lines were measured by q-PCR and Western blot, respectively. Cellular growth was determined by quantifying viable and apoptotic cells over time. Cell cycle was measured by flow cytometry. Migration and invasion were determined by transwell assays. PDEF promoter occupancy was determined by chromatin immunoprecipitation (ChIP). RESULTS: While normal prostate epithelium expresses PDEF mRNA and protein, tumors show no or decreased PDEF protein expression. Re-expression of PDEF in prostate cancer cells inhibits cell growth. PDEF expression is inversely correlated with survivin, urokinase plasminogen activator (uPA) and slug expression and ChIP studies identify survivin and uPA as direct transcriptional targets of PDEF. This study also shows that PDEF expression is regulated via a functional microRNA-204 (miR-204) binding site within the 3'UTR. Furthermore, we demonstrate the biologic significance of miR-204 expression and that miR-204 is over-expressed in human prostate cancer specimens. CONCLUSIONS: Collectively, the reported studies demonstrate that PDEF is a negative regulator of tumor progression and that the miR-204-PDEF regulatory axis contributes to PDEF protein loss and resultant cancer progression.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , MicroARNs/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/fisiopatología , Proteínas Proto-Oncogénicas c-ets/genética , Ciclo Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Núcleo Celular/metabolismo , Proliferación Celular , Progresión de la Enfermedad , Humanos , Masculino , Invasividad Neoplásica/fisiopatología , Neoplasias de la Próstata/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA