Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell ; 149(1): 49-62, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22401813

RESUMEN

Decremental loss of PTEN results in cancer susceptibility and tumor progression. PTEN elevation might therefore be an attractive option for cancer prevention and therapy. We have generated several transgenic mouse lines with PTEN expression elevated to varying levels by taking advantage of bacterial artificial chromosome (BAC)-mediated transgenesis. The "Super-PTEN" mutants are viable and show reduced body size due to decreased cell number, with no effect on cell size. Unexpectedly, PTEN elevation at the organism level results in healthy metabolism characterized by increased energy expenditure and reduced body fat accumulation. Cells derived from these mice show reduced glucose and glutamine uptake and increased mitochondrial oxidative phosphorylation and are resistant to oncogenic transformation. Mechanistically we find that PTEN elevation orchestrates this metabolic switch by regulating PI3K-dependent and -independent pathways and negatively impacting two of the most pronounced metabolic features of tumor cells: glutaminolysis and the Warburg effect.


Asunto(s)
Fosfohidrolasa PTEN/metabolismo , Transducción de Señal , Animales , Tamaño Corporal , Recuento de Células , Proliferación Celular , Respiración de la Célula , Metabolismo Energético , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo
2.
Mol Cell ; 63(6): 1006-20, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27635760

RESUMEN

While much research has examined the use of glucose and glutamine by tumor cells, many cancers instead prefer to metabolize fats. Despite the pervasiveness of this phenotype, knowledge of pathways that drive fatty acid oxidation (FAO) in cancer is limited. Prolyl hydroxylase domain proteins hydroxylate substrate proline residues and have been linked to fuel switching. Here, we reveal that PHD3 rapidly triggers repression of FAO in response to nutrient abundance via hydroxylation of acetyl-coA carboxylase 2 (ACC2). We find that PHD3 expression is strongly decreased in subsets of cancer including acute myeloid leukemia (AML) and is linked to a reliance on fat catabolism regardless of external nutrient cues. Overexpressing PHD3 limits FAO via regulation of ACC2 and consequently impedes leukemia cell proliferation. Thus, loss of PHD3 enables greater utilization of fatty acids but may also serve as a metabolic and therapeutic liability by indicating cancer cell susceptibility to FAO inhibition.


Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Ácidos Grasos/metabolismo , Regulación Neoplásica de la Expresión Génica , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Leucemia Mieloide Aguda/metabolismo , Prolina/metabolismo , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Acetil-CoA Carboxilasa/química , Acetil-CoA Carboxilasa/genética , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Hidroxilación , Prolina Dioxigenasas del Factor Inducible por Hipoxia/química , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Células K562 , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Masculino , Redes y Vías Metabólicas/genética , Ratones , Ratones Endogámicos NOD , Modelos Moleculares , Trasplante de Neoplasias , Oxidación-Reducción , Prolina/química , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Homología Estructural de Proteína , Análisis de Supervivencia
3.
Mol Cell ; 50(5): 686-98, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23746352

RESUMEN

Lipid metabolism is tightly controlled by the nutritional state of the organism. Nutrient-rich conditions increase lipogenesis, whereas nutrient deprivation promotes fat oxidation. In this study, we identify the mitochondrial sirtuin, SIRT4, as a regulator of lipid homeostasis. SIRT4 is active in nutrient-replete conditions to repress fatty acid oxidation while promoting lipid anabolism. SIRT4 deacetylates and inhibits malonyl CoA decarboxylase (MCD), an enzyme that produces acetyl CoA from malonyl CoA. Malonyl CoA provides the carbon skeleton for lipogenesis and also inhibits fat oxidation. Mice lacking SIRT4 display elevated MCD activity and decreased malonyl CoA in skeletal muscle and white adipose tissue. Consequently, SIRT4 KO mice display deregulated lipid metabolism, leading to increased exercise tolerance and protection against diet-induced obesity. In sum, this work elucidates SIRT4 as an important regulator of lipid homeostasis, identifies MCD as a SIRT4 target, and deepens our understanding of the malonyl CoA regulatory axis.


Asunto(s)
Carboxiliasas/metabolismo , Metabolismo de los Lípidos , Proteínas Mitocondriales/metabolismo , Sirtuinas/metabolismo , Acetilación , Tejido Adiposo Blanco/metabolismo , Animales , Dieta , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/genética , Lípidos/biosíntesis , Masculino , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Obesidad/etiología , Obesidad/metabolismo , Oxidación-Reducción , Sirtuinas/genética
4.
Proc Natl Acad Sci U S A ; 109(27): 10843-8, 2012 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-22711838

RESUMEN

Members of the RAS small GTPase family regulate cellular responses to extracellular stimuli by mediating the flux through downstream signal transduction cascades. RAS activity is strongly dependent on its subcellular localization and its nucleotide-binding status, both of which are modulated by posttranslational modification. We have determined that RAS is posttranslationally acetylated on lysine 104. Molecular dynamics simulations suggested that this modification affects the conformational stability of the Switch II domain, which is critical for the ability of RAS to interact with guanine nucleotide exchange factors. Consistent with this model, an acetylation-mimetic mutation in K-RAS4B suppressed guanine nucleotide exchange factor-induced nucleotide exchange and inhibited in vitro transforming activity. These data suggest that lysine acetylation is a negative regulatory modification on RAS. Because mutations in RAS family members are extremely common in cancer, modulation of RAS acetylation may constitute a therapeutic approach.


Asunto(s)
Genes ras/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Proteínas ras/química , Proteínas ras/metabolismo , Acetilación , Animales , Células COS , Chlorocebus aethiops , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisina/metabolismo , Mutagénesis Sitio-Dirigida , Prenilación/fisiología , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína/fisiología , Relación Estructura-Actividad , Proteínas ras/genética
5.
Cell Metab ; 7(2): 113-24, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18249171

RESUMEN

JunD, a transcription factor of the AP-1 family, protects cells against oxidative stress. Here, we show that junD(-/-) mice exhibit features of premature aging and shortened life span. They also display persistent hypoglycemia due to enhanced insulin secretion. Consequently, the insulin/IGF-1 signaling pathways are constitutively stimulated, leading to inactivation of FoxO1, a positive regulator of longevity. Hyperinsulinemia most likely results from enhanced pancreatic islet vascularization owing to chronic oxidative stress. Indeed, accumulation of free radicals in beta cells enhances VEGF-A transcription, which in turn increases pancreatic angiogenesis and insulin secretion. Accordingly, long-term treatment with an antioxidant rescues the phenotype of junD(-/-) mice. Indeed, dietary antioxidant supplementation was protective against pancreatic angiogenesis, hyperinsulinemia, and subsequent activation of insulin signaling cascades in peripheral tissues. Taken together, these data establish a pivotal role for oxidative stress in systemic regulation of insulin and define a key role for the JunD protein in longevity.


Asunto(s)
Envejecimiento/fisiología , Insulina/metabolismo , Neovascularización Patológica/etiología , Estrés Oxidativo/fisiología , Páncreas/irrigación sanguínea , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Hipoglucemia , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-jun/genética , Transducción de Señal
6.
Am J Pathol ; 179(1): 134-40, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21640331

RESUMEN

Genetic investigation of crescentic glomerulonephritis (Crgn) susceptibility in the Wistar Kyoto rat, a strain uniquely susceptible to nephrotoxic nephritis (NTN), allowed us to positionally clone the activator protein-1 transcription factor Jund as a susceptibility gene associated with Crgn. To study the influence of Jund deficiency (Jund(-/-)) on immune-mediated renal disease, susceptibility to accelerated NTN was examined in Jund(-/-) mice and C57BL/6 wild-type (WT) controls. Jund(-/-) mice showed exacerbated glomerular crescent formation and macrophage infiltration, 10 days after NTN induction. Serum urea levels were also significantly increased in the Jund(-/-) mice compared with the WT controls. There was no evidence of immune response differences between Jund(-/-) and WT animals because the quantitative immunofluorescence for sheep and mouse IgG deposition in glomeruli was similar. Because murine Jund was inactivated by replacement with a bacterial LacZ reporter gene, we then investigated its glomerular expression by IHC and found that the Jund promoter is mainly active in Jund(-/-) podocytes. Furthermore, cultured glomeruli from Jund(-/-) mice showed relatively increased expression of vascular endothelial growth factor A (Vegfa), Cxcr4, and Cxcl12, well-known HIF target genes. Accordingly, small-interfering RNA-mediated JUND knockdown in conditionally immortalized human podocyte cell lines led to increased VEGFA and HIF1A expression. Our findings suggest that deficiency of Jund may cause increased oxidative stress in podocytes, leading to altered VEGFA expression and subsequent glomerular injury in Crgn.


Asunto(s)
Glomerulonefritis/metabolismo , Glomerulonefritis/prevención & control , Podocitos/metabolismo , Proteínas Proto-Oncogénicas c-jun/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Western Blotting , Células Cultivadas , Femenino , Técnica del Anticuerpo Fluorescente , Glomerulonefritis/etiología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Técnicas para Inmunoenzimas , Inmunoglobulina G/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Podocitos/citología , Proteínas Proto-Oncogénicas c-jun/antagonistas & inhibidores , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ovinos , Factor de Transcripción AP-1 , Factor A de Crecimiento Endotelial Vascular/genética
7.
Biochim Biophys Acta ; 1804(8): 1652-7, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19962456

RESUMEN

Members of the sirtuin family of NAD(+)-dependent protein deacetylases are important regulators of longevity in yeast, worms, and flies. Mammals have seven sirtuins (SIRT1-7), each characterized by differences in subcellular localization, substrate preference, and biological function. While it is unclear whether sirtuins regulate aging in mammals, it is clear that sirtuins influence diverse aspects of their metabolism. Indeed, SIRT1 promotes oxidation of fatty acids in liver and skeletal muscle, cholesterol metabolism in liver, and lipid mobilization in white adipose tissue. Moreover, small-molecule activators of SIRT1 have recently been shown to protect mice from the negative effects of a high-fat diet. These findings suggest that sirtuins might provide important new targets for the treatment of obesity and related diseases. In this review, we discuss the major findings linking sirtuins with the regulation of lipid metabolism.


Asunto(s)
Metabolismo de los Lípidos , Sirtuinas/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Restricción Calórica , Grasas de la Dieta/administración & dosificación , Activación Enzimática/efectos de los fármacos , Humanos , Insulina/metabolismo , Secreción de Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Ratones , Modelos Biológicos , Músculo Esquelético/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Resveratrol , Estilbenos/farmacología
8.
Cell Rep ; 36(2): 109345, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34260923

RESUMEN

Upon nutrient stimulation, pre-adipocytes undergo differentiation to transform into mature adipocytes capable of storing nutrients as fat. We profiled cellular metabolite consumption to identify early metabolic drivers of adipocyte differentiation. We find that adipocyte differentiation raises the uptake and consumption of numerous amino acids. In particular, branched-chain amino acid (BCAA) catabolism precedes and promotes peroxisome proliferator-activated receptor gamma (PPARγ), a key regulator of adipogenesis. In early adipogenesis, the mitochondrial sirtuin SIRT4 elevates BCAA catabolism through the activation of methylcrotonyl-coenzyme A (CoA) carboxylase (MCCC). MCCC supports leucine oxidation by catalyzing the carboxylation of 3-methylcrotonyl-CoA to 3-methylglutaconyl-CoA. Sirtuin 4 (SIRT4) expression is decreased in adipose tissue of numerous diabetic mouse models, and its expression is most correlated with BCAA enzymes, suggesting a potential role for SIRT4 in adipose pathology through the alteration of BCAA metabolism. In summary, this work provides a temporal analysis of adipocyte differentiation and uncovers early metabolic events that stimulate transcriptional reprogramming.


Asunto(s)
Adipogénesis , Aminoácidos de Cadena Ramificada/metabolismo , Proteínas Mitocondriales/metabolismo , Sirtuinas/metabolismo , Células 3T3-L1 , Tejido Adiposo/metabolismo , Animales , Diabetes Mellitus Experimental , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , PPAR gamma/metabolismo
9.
Aging Cell ; 14(5): 818-25, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26109058

RESUMEN

The mitochondrial deacetylase SIRT3 regulates several important metabolic processes. SIRT3 is transcriptionally upregulated in multiple tissues during nutrient stresses such as dietary restriction and fasting, but the molecular mechanism of this induction is unclear. We conducted a bioinformatic study to identify transcription factor(s) involved in SIRT3 induction. Our analysis identified an enrichment of binding sites for nuclear respiratory factor 2 (NRF-2), a transcription factor known to play a role in the expression of mitochondrial genes, in the DNA sequences of SIRT3 and genes with closely correlated expression patterns. In vitro, knockdown or overexpression of NRF-2 modulated SIRT3 levels, and the NRF-2α subunit directly bound to the SIRT3 promoter. Our results suggest that NRF-2 is a regulator of SIRT3 expression and may shed light on how SIRT3 is upregulated during nutrient stress.


Asunto(s)
Factor de Transcripción de la Proteína de Unión a GA/metabolismo , Sirtuina 3/genética , Animales , Sitios de Unión , Células Cultivadas , Biología Computacional , Inducción Enzimática/genética , Factor de Transcripción de la Proteína de Unión a GA/deficiencia , Células HEK293 , Humanos , Regiones Promotoras Genéticas/genética , Sirtuina 3/biosíntesis
10.
Cell Metab ; 22(1): 164-74, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26001423

RESUMEN

Age-related frailty may be due to decreased skeletal muscle regeneration. The role of TGF-ß molecules myostatin and GDF11 in regeneration is unclear. Recent studies showed an age-related decrease in GDF11 and that GDF11 treatment improves muscle regeneration, which were contrary to prior studies. We now show that these recent claims are not reproducible and the reagents previously used to detect GDF11 are not GDF11 specific. We develop a GDF11-specific immunoassay and show a trend toward increased GDF11 levels in sera of aged rats and humans. GDF11 mRNA increases in rat muscle with age. Mechanistically, GDF11 and myostatin both induce SMAD2/3 phosphorylation, inhibit myoblast differentiation, and regulate identical downstream signaling. GDF11 significantly inhibited muscle regeneration and decreased satellite cell expansion in mice. Given early data in humans showing a trend for an age-related increase, GDF11 could be a target for pharmacologic blockade to treat age-related sarcopenia.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Factores de Diferenciación de Crecimiento/metabolismo , Músculo Esquelético/fisiología , Regeneración , Envejecimiento , Animales , Proteínas Morfogenéticas Óseas/sangre , Proteínas Morfogenéticas Óseas/genética , Diferenciación Celular , Línea Celular , Factores de Diferenciación de Crecimiento/sangre , Factores de Diferenciación de Crecimiento/genética , Humanos , Ratones , Mioblastos/citología , Mioblastos/metabolismo , Miostatina/metabolismo , Ratas , Transducción de Señal , Regulación hacia Arriba
11.
Mol Cancer Res ; 11(9): 1072-7, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23723075

RESUMEN

UNLABELLED: Activating point mutations in K-RAS are extremely common in cancers of the lung, colon, and pancreas and are highly predictive of poor therapeutic response. One potential strategy for overcoming the deleterious effects of mutant K-RAS is to alter its posttranslational modification. Although therapies targeting farnesylation have been explored, and have ultimately failed, the therapeutic potential of targeting other modifications remains to be seen. Recently, it was shown that acetylation of lysine 104 attenuates K-RAS transforming activity by interfering with GEF-induced nucleotide exchange. Here, the deacetylases HDAC6 and SIRT2 were shown to regulate the acetylation state of K-RAS in cancer cells. By extension, inhibition of either of these enzymes has a dramatic impact on the growth properties of cancer cells expressing activation mutants of K-RAS. These results suggest that therapeutic targeting of HDAC6 and/or SIRT2 may represent a new way to treat cancers expressing mutant forms of K-RAS. IMPLICATIONS: This study suggests that altering K-RAS acetylation is a feasible approach to limiting tumorigenic potential.


Asunto(s)
Transformación Celular Neoplásica , Histona Desacetilasas/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Sirtuina 2/metabolismo , Proteínas ras/metabolismo , Acetilación , Animales , Células Cultivadas , Regulación Neoplásica de la Expresión Génica , Histona Desacetilasa 6 , Histona Desacetilasas/genética , Humanos , Ratones , Terapia Molecular Dirigida , Células 3T3 NIH , Neoplasias/patología , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Sirtuina 2/genética , Proteínas ras/genética
12.
Mol Cell Biol ; 33(22): 4552-61, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24043310

RESUMEN

Sirtuins are a family of protein deacetylases, deacylases, and ADP-ribosyltransferases that regulate life span, control the onset of numerous age-associated diseases, and mediate metabolic homeostasis. We have uncovered a novel role for the mitochondrial sirtuin SIRT4 in the regulation of hepatic lipid metabolism during changes in nutrient availability. We show that SIRT4 levels decrease in the liver during fasting and that SIRT4 null mice display increased expression of hepatic peroxisome proliferator-activated receptor α (PPARα) target genes associated with fatty acid catabolism. Accordingly, primary hepatocytes from SIRT4 knockout (KO) mice exhibit higher rates of fatty acid oxidation than wild-type hepatocytes, and SIRT4 overexpression decreases fatty acid oxidation rates. The enhanced fatty acid oxidation observed in SIRT4 KO hepatocytes requires functional SIRT1, demonstrating a clear cross talk between mitochondrial and nuclear sirtuins. Thus, SIRT4 is a new component of mitochondrial signaling in the liver and functions as an important regulator of lipid metabolism.


Asunto(s)
Ácidos Grasos/metabolismo , Hígado/metabolismo , Proteínas Mitocondriales/metabolismo , PPAR alfa/metabolismo , Sirtuinas/metabolismo , Animales , Línea Celular , Células Cultivadas , Ayuno , Ácidos Grasos/genética , Femenino , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , NAD/metabolismo , Oxidación-Reducción , PPAR alfa/genética , Sirtuina 1/metabolismo , Sirtuinas/genética , Activación Transcripcional , Regulación hacia Arriba
13.
Cancer Cell ; 23(4): 450-63, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23562301

RESUMEN

DNA damage elicits a cellular signaling response that initiates cell cycle arrest and DNA repair. Here, we find that DNA damage triggers a critical block in glutamine metabolism, which is required for proper DNA damage responses. This block requires the mitochondrial SIRT4, which is induced by numerous genotoxic agents and represses the metabolism of glutamine into tricarboxylic acid cycle. SIRT4 loss leads to both increased glutamine-dependent proliferation and stress-induced genomic instability, resulting in tumorigenic phenotypes. Moreover, SIRT4 knockout mice spontaneously develop lung tumors. Our data uncover SIRT4 as an important component of the DNA damage response pathway that orchestrates a metabolic block in glutamine metabolism, cell cycle arrest, and tumor suppression.


Asunto(s)
Daño del ADN , Glutamina/antagonistas & inhibidores , Glutamina/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Neoplasias Experimentales/genética , Sirtuinas/genética , Animales , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Reparación del ADN , Femenino , Glutamina/genética , Células HEK293 , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Noqueados , Mitocondrias/enzimología , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Neoplasias Experimentales/enzimología , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Transducción de Señal , Sirtuinas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
14.
J Clin Invest ; 122(9): 3088-100, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22886304

RESUMEN

Cancer cells exhibit an aberrant metabolism that facilitates more efficient production of biomass and hence tumor growth and progression. However, the genetic cues modulating this metabolic switch remain largely undetermined. We identified a metabolic function for the promyelocytic leukemia (PML) gene, uncovering an unexpected role for this bona fide tumor suppressor in breast cancer cell survival. We found that PML acted as both a negative regulator of PPARγ coactivator 1A (PGC1A) acetylation and a potent activator of PPAR signaling and fatty acid oxidation. We further showed that PML promoted ATP production and inhibited anoikis. Importantly, PML expression allowed luminal filling in 3D basement membrane breast culture models, an effect that was reverted by the pharmacological inhibition of fatty acid oxidation. Additionally, immunohistochemical analysis of breast cancer biopsies revealed that PML was overexpressed in a subset of breast cancers and enriched in triple-negative cases. Indeed, PML expression in breast cancer correlated strikingly with reduced time to recurrence, a gene signature of poor prognosis, and activated PPAR signaling. These findings have important therapeutic implications, as PML and its key role in fatty acid oxidation metabolism are amenable to pharmacological suppression, a potential future mode of cancer prevention and treatment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Acetilación , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/genética , Dieta Alta en Grasa/efectos adversos , Supervivencia sin Enfermedad , Ácidos Grasos/metabolismo , Femenino , Humanos , Estimación de Kaplan-Meier , Hígado/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Proteínas Nucleares/genética , Obesidad/etiología , Obesidad/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Proteína de la Leucemia Promielocítica , Procesamiento Proteico-Postraduccional , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Transcriptoma , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA