Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Prog Brain Res ; 275: 1-23, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36841565

RESUMEN

Ornithopod dinosaurs were a successful group before they became extinct at the end of the Cretaceous. They were present on every continent, though they were rare in the Southern Hemisphere. We present the results of our work on the brain of these dinosaurs as an attempt to determine which evolutionary trends affected it. Old and new technologies allow us to peer into the skull of long extinct animals and retrieve information about their brain. First we provide a short description of the brain of ornithopod dinosaurs from Europe and Asia, then we sum up the characteristics that can be gathered from it. The presence of valleculae helps us to assess the actual size of the brain with more confidence. The olfactory peduncles are large and these animals had a good sense of smell. There is a trend toward an increase in the size of the cerebral hemispheres, and a more straight-lined brain. The latter can be the result of the ontogeny and the size achieved by the adult animal on the development of the brain. Other characteristics, like the development of the cerebral hemispheres and the encephalization quotient, allude to Hadrosauridae having had cognitive abilities more developed than previously assumed. This is in adequacy with other data from the physical characteristics (e.g., crests) and the social life (e.g., living in herds, communal nests) of these dinosaurs, which denote high and complex behaviors like care for their young, sexual courtship, and gregariousness.


Asunto(s)
Dinosaurios , Animales , Dinosaurios/anatomía & histología , Anatomía Comparada , Fósiles , Encéfalo/anatomía & histología , Cráneo/anatomía & histología , Evolución Biológica
2.
Commun Biol ; 6(1): 636, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37311857

RESUMEN

Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology's approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior.


Asunto(s)
Encéfalo , Fósiles , Filogenia , Arqueología , Artefactos
3.
PLoS One ; 8(11): e78899, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24236064

RESUMEN

Information on the structure of the brain of the lambeosaurine hadrosaurid dinosaur Amurosaurus riabinini, from the Late Maastrichtian of Blagoveschensk, Far Eastern Russia, is presented based on endocranial casts. The endocasts are compared with physical and digital endocasts of other dinosaurs. The olfactory tract was large. The cerebral hemispheres are enlarged and round, illustrating the important development of this part of the brain in hadrosaurids. The pituitary body is enlarged as well, perhaps prefiguring the large size attained by hadrosaurids. The EQ of Amurosaurus was similar to that of the lambeosaurine dinosaur Hypacrosaurus altispinus and was relatively larger than in most extant non-avian reptiles, including sauropod and ceratopsian dinosaurs. However, it was apparently relatively smaller than those of most theropod dinosaurs. The relatively large size of the cerebrum is consistent with the range and complexity of social behaviors inferred for lambeosaurine dinosaurs.


Asunto(s)
Dinosaurios/anatomía & histología , Cráneo/anatomía & histología , Animales , Conducta Animal , Cerebro/anatomía & histología , Nervios Craneales/anatomía & histología , Fósiles , Tamaño de los Órganos , Federación de Rusia , Conducta Social
4.
PLoS One ; 7(5): e36849, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22666331

RESUMEN

BACKGROUND: Four main dinosaur sites have been investigated in latest cretaceous deposits from the Amur/Heilongjiang Region: Jiayin and Wulaga in China (Yuliangze Formation), Blagoveschensk and Kundur in Russia (Udurchukan Formation). More than 90% of the bones discovered in these localities belong to hollow-crested lambeosaurine saurolophids, but flat-headed saurolophines are also represented: Kerberosaurus manakini at Blagoveschensk and Wulagasaurus dongi at Wulaga. METHODOLOGY/PRINCIPAL FINDINGS: Herein we describe a new saurolophine dinosaur, Kundurosaurus nagornyi gen. et sp. nov., from the Udurchukan Formation (Maastrichtian) of Kundur, represented by disarticulated cranial and postcranial material. This new taxon is diagnosed by four autapomorphies. CONCLUSIONS/SIGNIFICANCE: A phylogenetic analysis of saurolophines indicates that Kundurosaurus nagornyi is nested within a rather robust clade including Edmontosaurus spp., Saurolophus spp., and Prosaurolophus maximus, possibly as a sister-taxon for Kerberosaurus manakini also from the Udurchukan Formation of Far Eastern Russia. The high diversity and mosaic distribution of Maastrichtian hadrosaurid faunas in the Amur-Heilongjiang region are the result of a complex palaeogeographical history and imply that many independent hadrosaurid lineages dispersed without any problem between western America and eastern Asia at the end of the Cretaceous.


Asunto(s)
Dinosaurios , Animales , Dinosaurios/anatomía & histología , Dinosaurios/clasificación , Paleontología , Filogenia , Federación de Rusia , Terminología como Asunto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA