Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lancet Infect Dis ; 21(1): 52-58, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33058797

RESUMEN

BACKGROUND: The degree of protective immunity conferred by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently unknown. As such, the possibility of reinfection with SARS-CoV-2 is not well understood. We describe an investigation of two instances of SARS-CoV-2 infection in the same individual. METHODS: A 25-year-old man who was a resident of Washoe County in the US state of Nevada presented to health authorities on two occasions with symptoms of viral infection, once at a community testing event in April, 2020, and a second time to primary care then hospital at the end of May and beginning of June, 2020. Nasopharyngeal swabs were obtained from the patient at each presentation and twice during follow-up. Nucleic acid amplification testing was done to confirm SARS-CoV-2 infection. We did next-generation sequencing of SARS-CoV-2 extracted from nasopharyngeal swabs. Sequence data were assessed by two different bioinformatic methodologies. A short tandem repeat marker was used for fragment analysis to confirm that samples from both infections came from the same individual. FINDINGS: The patient had two positive tests for SARS-CoV-2, the first on April 18, 2020, and the second on June 5, 2020, separated by two negative tests done during follow-up in May, 2020. Genomic analysis of SARS-CoV-2 showed genetically significant differences between each variant associated with each instance of infection. The second infection was symptomatically more severe than the first. INTERPRETATION: Genetic discordance of the two SARS-CoV-2 specimens was greater than could be accounted for by short-term in vivo evolution. These findings suggest that the patient was infected by SARS-CoV-2 on two separate occasions by a genetically distinct virus. Thus, previous exposure to SARS-CoV-2 might not guarantee total immunity in all cases. All individuals, whether previously diagnosed with COVID-19 or not, should take identical precautions to avoid infection with SARS-CoV-2. The implications of reinfections could be relevant for vaccine development and application. FUNDING: Nevada IDEA Network of Biomedical Research, and the National Institute of General Medical Sciences (National Institutes of Health).


Asunto(s)
COVID-19/diagnóstico , Reinfección/diagnóstico , SARS-CoV-2/genética , Adulto , Genoma Viral , Humanos , Masculino , Filogenia
2.
J Clin Virol ; 129: 104501, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32619959

RESUMEN

BACKGROUND: As the demand for laboratory testing for SARS-CoV-2 increases, additional varieties of testing methodologies are being considered. While real time polymerase chain reaction (RT-PCR) has performed as the main method for virus detection, other methods are becoming available, including transcription mediated amplification (TMA). The Hologic Aptima SARS-CoV-2 Assay utilizes TMA as a target amplification mechanism, and it has only recently received Emergency Use Authorization (EUA) by the Food and Drug Administration (FDA). OBJECTIVES: We sought to compare the sensitivity and specificity of the Aptima SARS-CoV-2 Assay to RTPCR as a means of SARS-CoV-2 detection in a diagnostic setting. STUDY DESIGN: We performed a limit-of-detection study (LoD) to assess the analytical sensitivity of TMA and RT-PCR. This preceded a comparison of the methods using previously evaluated clinical specimens (nasopharyngeal swabs) using 116 human specimens tested by both methodologies. Specimens included sixty-one (61) specimens found reactive by real-time PCR, fifty-one (51) found non-reactive, and four (4) deemed inconclusive. RESULTS: The Aptima SARS-CoV-2 Assay showed a markedly higher analytical sensitivity than RT-PCR by LoD study. Evaluation of clinical specimens resulted in fewer inconclusive results by the SARS-CoV-2 assay, leading to potentially higher clinical sensitivity. CONCLUSIONS: Higher analytical sensitivity may explain TMA's ability to ascertain for the presence of SARS-CoV-2 genome in human specimens deemed inconclusive by real-time PCR. TMA provides an effective, highly sensitive means of detection of SARS-CoV-2 in nasopharyngeal specimens.


Asunto(s)
Betacoronavirus/aislamiento & purificación , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Neumonía Viral/diagnóstico , ARN Viral/análisis , Betacoronavirus/genética , COVID-19 , Prueba de COVID-19 , Vacunas contra la COVID-19 , Humanos , Pandemias , ARN Viral/genética , SARS-CoV-2 , Sensibilidad y Especificidad
3.
J Biomed Res ; 34(6): 431-436, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33243941

RESUMEN

We sought to determine the characteristics of viral specimens associated with fatal cases, asymptomatic cases and non-fatal symptomatic cases of COVID-19. This included the analysis of 1264 specimens found reactive for at least two SARS-CoV-2 specific loci from people screened for infection in Northern Nevada in March-May of 2020. Of these, 30 were specimens from fatal cases, while 23 were from positive, asymptomatic cases. We assessed the relative amounts of SARS-CoV-2 RNA from sample swabs by real-time PCR and use of the threshold crossing value (Ct). Moreover, we compared the amount of human RNase P found on the same swabs. A considerably higher viral load was found to be associated with swabs from cases involving fatality and the difference was found to be strongly statistically significant. Noting this difference, we sought to assess whether any genetic correlation could be found in association with virus from fatal cases using whole genome sequencing. While no common genetic elements were discerned, one branch of epidemiologically linked fatal cases did have two point mutations, which no other of 156 sequenced cases from northern Nevada had. The mutations caused amino acid changes in the 3'-5' exonuclease protein, and the product of the gene, orf8.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA