RESUMEN
In the original publication [...].
RESUMEN
Pig feeding prior to the extensive fattening phase might affect the final lipid profile and product quality. This study evaluates how maternal supplementation with vitamin E (VITE) (100 mg/kg), hydroxytyrosol (HXT) (1.5 mg/kg), or combined administration (VE + HXT) affects the piglet's plasma and tissues' fatty acid profiles and lipid stability according to the sow's parity number (PN), as well as the possible changes to the lipid profile after extensive feeding. The sows' PN affected the total fatty acid profile of plasma, muscle, and liver of piglets, with lower Δ-9 and Δ-6 desaturase indices but higher Δ-5 in those from primiparous (P) than multiparous (M) sows. Dietary VITE was more effective at decreasing C16:0 and saturated fatty acids in the muscle of piglets born from M than P sows, and modified the liver phospholipids in a different way. Sows' supplementation with HXT increased C18:2n-6 in triglycerides and polyunsaturated fatty acids (PUFA) in muscle phospholipids. In the liver, HXT supplementation also increased free-PUFA and free-n-3 fatty acids. However, lipid oxidation of piglets' tissues was not affected by the antioxidant supplementation, and it was higher in the livers of piglets born from M sows. The fatty acid profile in the muscle of pigs after extensive feeding was not affected by the PN, but it was by the sows' antioxidant supplementation, with positive effects on quality by both compounds.
RESUMEN
Antioxidant supplementation in critical periods may be useful for improvement of piglet early viability and development. We have evaluated the effects of maternal perinatal diet inclusion of a high vitamin E level (VE, 100 mg all-rac-α-tocopheryl acetate /kg), hydroxytyrosol (HT, 1.5 mg/kg), or their combination (VEHT), in comparison to a control diet (C, 30 mg all-rac-α-tocopheryl acetate /kg), on the offspring homeostasis and metabolism, analysing the weaned piglets' adipose tissue transcriptome and adipocyte morphology. Diets were provided to pregnant Iberian sows (n = 48, 12 per treatment) from gestation day 85 to weaning (28 days postpartum) and 48 piglets (n = 12 per treatment) were sampled 5 days postweaning for dorsal subcutaneous adipose tissue analyses. RNA obtained from 6 animals for each diet was used for paired-end RNA sequencing. Results show that supplementation of sows' diet with either vitamin E or hydroxytyrosol had substantial effects on weaned piglet adipose transcriptome, with 664 and 587 genes being differentially expressed, in comparison to C, respectively (q-value<0.10, Fold Change>1.5). Genes upregulated in C were mainly involved in inflammatory and immune response, as well as oxidative stress, and relevant canonical pathways and upstream regulators involved in these processes were predicted as activated, such as TNF, IFNB or NFKB. Vitamin E, when supplemented alone at high dose, activated lipid biosynthesis functions, pathways and regulators, this finding being accompanied by increased adipocyte size. Results suggest an improved metabolic and antioxidant status of adipose tissue in animals born from sows supplemented with individual antioxidants, while the combined supplementation barely affected gene expression, with VEHT showing a prooxidant/proinflamatory functional profile similar to C animals. Different hypothesis are proposed to explain this unexpected result. Findings allow a deeper understanding of the processes taking place in adipose tissue of genetically fat animals and the role of antioxidants in the regulation of fat cells function.
Asunto(s)
Tejido Adiposo , Antioxidantes , Suplementos Dietéticos , Alcohol Feniletílico , Transcriptoma , Destete , Animales , Antioxidantes/metabolismo , Femenino , Transcriptoma/efectos de los fármacos , Porcinos , Embarazo , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Alcohol Feniletílico/administración & dosificación , Vitamina E/farmacología , Vitamina E/administración & dosificación , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Alimentación Animal/análisisRESUMEN
Different feeding strategies are being applied to sows in order to obtain homogeneous piglets' weights and improved health status. This study evaluated how the dietary supplementation of vitamin E (VE) (100 mg/kg), hydroxytyrosol (HXT) (1.5 mg/kg) or the combined administration (VE + HXT) given to Iberian sows from day 85 of gestation affected the growth pattern of the piglets and their oxidative status; and quantified what these effects were due to. Dietary VE and HXT improved the oxidative status of sows and piglets. Both VE and HXT modified the growth pattern at birth and performances of the piglets in a different way according to the growing period. Piglets' performances were positively correlated with plasma VE and negatively with plasma malondialdehyde (MDA) of the sow. However, the highest variation in growth patterns was explained by the colostrum composition. Significant linear equations were observed between piglets' performances and colostrum saturated (SAT), n-7 monounsaturated fatty acids (C16:1n-7 and C18:1n-7) and different desaturases indices. This study would confirm that VE supplementation to the sow diet could be more adequate than HXT for the improved development during the first weeks of a piglet's life. The combined administration of both antioxidants would not produce additional positive effects compared to the individual supplementation.
RESUMEN
An adequate intestinal environment before weaning may contribute to diarrhea predisposition and piglet development. This study evaluates how the dietary supplementation of vitamin E (VE) (100 mg/kg), hydroxytyrosol (HXT) (1.5 mg/kg) or the combined administration (VE + HXT) given to Iberian sows from gestation affects the piglet's faecal characteristics, short chain fatty acids (SCFAs), fatty acid profile or intestinal morphology as indicators of gut health; and quantify the contribution of the oxidative status and colostrum/milk composition to the piglet's SCFAs content and intestinal health. Dietary VE increased isobutyric acid (iC4), butyric acid (C4), isovaleric acid (iC5), and ∑SCFAs, whereas HXT increased iC4 and tended to decrease ∑SCFAs of faeces. Piglets from HXT-supplemented sows also tended to have higher faecal C20:4n-6/C20:2 ratio C22:6 proportion and showed lower occludin gene expression in the duodenum. The combination of both antioxidants had a positive effect on iC4 and iC5 levels. Correlation analyses and regression equations indicate that faecal SCFAs were related to oxidative status (mainly plasma VE) and colostrum and milk composition (mainly C20:2, C20:3, C20:4 n-6). This study would confirm the superiority of VE over HXT supplementation to improve intestinal homeostasis, gut health, and, consequently piglet growth.
RESUMEN
Modifying the composition of a sow's milk could be a strategy to improve the intestinal health and growth of her piglet during the first weeks of life. This study evaluated how dietary supplementation of vitamin E (VE), hydroxytyrosol (HXT) or VE+HXT given to Iberian sows from late gestation affected the colostrum and milk composition, lipid stability and their relationship with the piglet's oxidative status. Colostrum from VE-supplemented sows had greater C18:1n-7 than non-supplemented sows, whereas HXT increased polyunsaturated (∑PUFAs), ∑n-6 and ∑n-3 fatty acids. In 7-day milk, the main effects were induced by VE supplementation that decreased ∑PUFAs, ∑n-6 and ∑n-3 and increased the Δ-6-desaturase activity. The VE+HXT supplementation resulted in lower desaturase capacity in 20-day milk. Positive correlations were observed between the estimated mean milk energy output and the desaturation capacity of sows. The lowest concentration of malondialdehyde (MDA) in milk was observed in VE-supplemented groups, whereas HXT supplementation increased oxidation. Milk lipid oxidation was negatively correlated with the sow's plasma oxidative status and to a great extent with the oxidative status of piglets after weaning. Maternal VE supplementation produced a more beneficial milk composition to improve the oxidative status of piglets, which could promote gut health and piglet growth during the first weeks, but more research is needed to clarify this.