Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 28(24): 24LT03, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28475105

RESUMEN

Nanoparticles, and more specifically gold nanoparticles (AuNPs), have attracted much scientific and technological interest in the last few decades. Their popularity is attributed to their unique optical, catalytic, electrical and magnetic properties when compared with the bulk. However, one of the main problems with AuNPs is their long-term stability. Two-dimensional materials like MoS2 (WS2) are semiconductors that exhibit a combination of properties which make them suitable for electronic, optical and (photo)catalytic devices. Few-layer MoS2 (WS2) nanoparticles (NPs), and in particular single-layer ones, show intriguing optical and electrical properties which are very different from those of the bulk compounds. Here we demonstrate the synthesis of AuNPs sheathed by a single layer of MoS2 (WS2), i.e. a core-shell nanostructure (AuNP@1L-MoS2). The hybrid NPs exhibit optical properties that are different from those of either constituent and are amenable for modulation via their chemistry, offering a myriad of applications.

2.
Nat Commun ; 12(1): 229, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431908

RESUMEN

Understanding inorganic nanocrystal (NC) growth dynamic pathways under their native fabrication environment remains a central goal of science, as it is crucial for rationalizing novel nanoformulations with desired architectures and functionalities. We here present an in-situ method for quantifying, in real time, NCs' size evolution at sub-nm resolution, their concentration, and reactants consumption rate for studying NC growth mechanisms. Analyzing sequential high-resolution liquid-state 19F-NMR spectra obtained in-situ and validating by ex-situ cryoTEM, we explore the growth evolution of fluoride-based NCs (CaF2 and SrF2) in water, without disturbing the synthesis conditions. We find that the same nanomaterial (CaF2) can grow by either a particle-coalescence or classical-growth mechanism, as regulated by the capping ligand, resulting in different crystallographic properties and functional features of the fabricated NC. The ability to reveal, in real time, mechanistic pathways at which NCs grow open unique opportunities for tunning the properties of functional materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA