Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(22): e2300322120, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216553

RESUMEN

To initiate directed movement, cells must become polarized, establishing a protrusive leading edge and a contractile trailing edge. This symmetry-breaking process involves reorganization of cytoskeleton and asymmetric distribution of regulatory molecules. However, what triggers and maintains this asymmetry during cell migration remains largely elusive. Here, we established a micropatterning-based 1D motility assay to investigate the molecular basis of symmetry breaking required for directed cell migration. We show that microtubule (MT) detyrosination drives cell polarization by directing kinesin-1-based transport of the adenomatous polyposis coli (APC) protein to cortical sites. This is essential for the formation of cell's leading edge during 1D and 3D cell migration. These data, combined with biophysical modeling, unveil a key role for MT detyrosination in the generation of a positive feedback loop linking MT dynamics and kinesin-1-based transport. Thus, symmetry breaking during cell polarization relies on a feedback loop driven by MT detyrosination that supports directed cell migration.


Asunto(s)
Cinesinas , Microtúbulos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Movimiento Celular , Citoesqueleto/metabolismo
2.
J Biol Chem ; 293(4): 1298-1314, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29187600

RESUMEN

Aberrant expression of O-glycans is a hallmark of epithelial cancers. Mucin-type O-glycosylation is initiated by a large family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts) that target different proteins and are differentially expressed in cells and organs. Here, we investigated the expression patterns of all of the GalNAc-Ts in colon cancer by analyzing transcriptomic data. We found that GalNAc-T6 was highly up-regulated in colon adenocarcinomas but absent in normal-appearing adjacent colon tissue. These results were verified by immunohistochemistry, suggesting that GalNAc-T6 plays a role in colon carcinogenesis. To investigate the function of GalNAc-T6 in colon cancer, we used precise gene targeting to produce isogenic colon cancer cell lines with a knockout/rescue system for GALNT6 GalNAc-T6 expression was associated with a cancer-like, dysplastic growth pattern, whereas GALNT6 knockout cells showed a more normal differentiation pattern, reduced proliferation, normalized cell-cell adhesion, and formation of crypts in tissue cultures. O-Glycoproteomic analysis of the engineered cell lines identified a small set of GalNAc-T6-specific targets, suggesting that this isoform has unique cellular functions. In support of this notion, the genetically and functionally closely related GalNAc-T3 homolog did not show compensatory functionality for effects observed for GalNAc-T6. Taken together, these data strongly suggest that aberrant GalNAc-T6 expression and site-specific glycosylation is involved in oncogenic transformation.


Asunto(s)
Adenocarcinoma/enzimología , Diferenciación Celular , Colon/enzimología , Neoplasias del Colon/enzimología , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Mucosa Intestinal/enzimología , N-Acetilgalactosaminiltransferasas/biosíntesis , Proteínas de Neoplasias/biosíntesis , Adenocarcinoma/genética , Adenocarcinoma/patología , Línea Celular Tumoral , Colon/patología , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Glicosilación , Humanos , Mucosa Intestinal/patología , N-Acetilgalactosaminiltransferasas/genética , Proteínas de Neoplasias/genética
3.
EMBO J ; 32(10): 1478-88, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23584533

RESUMEN

Glycosylation is the most abundant and diverse posttranslational modification of proteins. While several types of glycosylation can be predicted by the protein sequence context, and substantial knowledge of these glycoproteomes is available, our knowledge of the GalNAc-type O-glycosylation is highly limited. This type of glycosylation is unique in being regulated by 20 polypeptide GalNAc-transferases attaching the initiating GalNAc monosaccharides to Ser and Thr (and likely some Tyr) residues. We have developed a genetic engineering approach using human cell lines to simplify O-glycosylation (SimpleCells) that enables proteome-wide discovery of O-glycan sites using 'bottom-up' ETD-based mass spectrometric analysis. We implemented this on 12 human cell lines from different organs, and present a first map of the human O-glycoproteome with almost 3000 glycosites in over 600 O-glycoproteins as well as an improved NetOGlyc4.0 model for prediction of O-glycosylation. The finding of unique subsets of O-glycoproteins in each cell line provides evidence that the O-glycoproteome is differentially regulated and dynamic. The greatly expanded view of the O-glycoproteome should facilitate the exploration of how site-specific O-glycosylation regulates protein function.


Asunto(s)
Glicoproteínas/análisis , N-Acetilgalactosaminiltransferasas/metabolismo , Proteómica/métodos , Algoritmos , Secuencias de Aminoácidos , Línea Celular Tumoral , Ingeniería Genética/métodos , Glicoproteínas/metabolismo , Glicosilación , Humanos , N-Acetilgalactosaminiltransferasas/genética , Polipéptido N-Acetilgalactosaminiltransferasa
4.
Glycoconj J ; 30(3): 227-36, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22878593

RESUMEN

Protein glycosylation often changes during cancer development, resulting in the expression of cancer-associated carbohydrate antigens. In particular mucins such as MUC1 are subject to these changes. We previously identified an immunodominant Tn-MUC1 (GalNAc-α-MUC1) cancer-specific epitope not covered by immunological tolerance in MUC1 humanized mice and man. The objective of this study was to determine if mouse antibodies to this Tn-MUC1 epitope induce antibody-dependent cellular cytotoxicity (ADCC) pivotal for their potential use in cancer immunotherapy. Binding affinity of mAb 5E5 directed to Tn-MUC1 was investigated using BiaCore. The availability of Tn-MUC1 on the surface of breast cancer cells was evaluated by immunohistochemistry, confocal microscopy, and flow cytometry, followed by in vitro assessment of antibody-dependent cellular cytotoxicity by mAb 5E5. Biacore analysis demonstrated high affinity binding (KD = 1.7 nM) of mAb 5E5 to its target, Tn-MUC1. Immunolabelling with mAb 5E5 revealed surface expression of the Tn-MUC1 epitope in breast cancer tissue and cell lines, and mAb 5E5 induced ADCC in two human breast cancer cell lines, MCF7 and T47D. Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity suggesting that antibodies targeting glycopeptide epitopes on mucins are strong candidates for cancer-specific immunotherapies.


Asunto(s)
Adenocarcinoma/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Neoplasias de la Mama/inmunología , Mucina-1/inmunología , Acetilgalactosamina/química , Anticuerpos Monoclonales/inmunología , Afinidad de Anticuerpos , Femenino , Glicosilación , Humanos , Células MCF-7 , Mucina-1/química , Mucina-1/metabolismo
5.
PLoS One ; 8(9): e72413, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24039759

RESUMEN

Membrane bound mucins are up-regulated and aberrantly glycosylated during malignant transformation in many cancer cells. This results in a negatively charged glycoprotein coat which may protect cancer cells from immune surveillance. However, only limited data have so far demonstrated the critical steps in glycan elongation that make aberrantly glycosylated mucins affect the interaction between cancer cells and cytotoxic effector cells of the immune system. Tn (GalNAc-Ser/Thr), STn (NeuAcα2-6GalNAc-Ser/Thr), T (Galß1-3GalNAc-Ser/Thr), and ST (NeuAcα2-6Galß1-3GalNAc-Ser/Thr) antigens are recognized as cancer associated truncated glycans, and are expressed in many adenocarcinomas, e.g. breast- and pancreatic cancer cells. To investigate the role of the cancer associated glycan truncations in immune-mediated killing we created glyco-engineered breast- and pancreatic cancer cells expressing only the shortest possible mucin-like glycans (Tn and STn). Glyco-engineering was performed by zinc finger nuclease (ZFN) knockout (KO) of the Core 1 enzyme chaperone COSMC, thereby preventing glycan elongation beyond the initial GalNAc residue in O-linked glycans. We find that COSMC KO in the breast and pancreatic cancer cell lines T47D and Capan-1 increases sensitivity to both NK cell mediated antibody-dependent cellular-cytotoxicity (ADCC) and cytotoxic T lymphocyte (CTL)-mediated killing. In addition, we investigated the association between total cell surface expression of MUC1/MUC16 and NK or CTL mediated killing, and observed an inverse correlation between MUC16/MUC1 expression and the sensitivity to ADCC and CTL-mediated killing. Together, these data suggest that up-regulation of membrane bound mucins protects cells from immune mediated killing, and that particular glycosylation steps, as demonstrated for glycan elongation beyond Tn and STn, can be important for fine tuning of the immune escape mechanisms in cancer cells.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Antígeno Ca-125/metabolismo , Proteínas de la Membrana/metabolismo , Mucina-1/metabolismo , Linfocitos T Citotóxicos/fisiología , Escape del Tumor , Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular , Cetuximab , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Técnicas de Inactivación de Genes , Glicosilación , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Polisacáridos/metabolismo
6.
PLoS One ; 7(11): e50139, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23189185

RESUMEN

Aberrant glycosylation of mucins and other extracellular proteins is an important event in carcinogenesis and the resulting cancer associated glycans have been suggested as targets in cancer immunotherapy. We assessed the role of O-linked GalNAc glycosylation on antigen uptake, processing, and presentation on MHC class I and II molecules. The effect of GalNAc O-glycosylation was monitored with a model system based on ovalbumin (OVA)-MUC1 fusion peptides (+/- glycosylation) loaded onto dendritic cells co-cultured with IL-2 secreting OVA peptide-specific T cell hybridomas. To evaluate the in vivo response to a cancer related tumor antigen, Balb/c or B6.Cg(CB)-Tg(HLA-A/H2-D)2Enge/J (HLA-A2 transgenic) mice were immunized with a non-glycosylated or GalNAc-glycosylated MUC1 derived peptide followed by comparison of T cell proliferation, IFN-γ release, and antibody induction. GalNAc-glycosylation promoted presentation of OVA-MUC1 fusion peptides by MHC class II molecules and the MUC1 antigen elicited specific Ab production and T cell proliferation in both Balb/c and HLA-A2 transgenic mice. In contrast, GalNAc-glycosylation inhibited the presentation of OVA-MUC1 fusion peptides by MHC class I and abolished MUC1 specific CD8+ T cell responses in HLA-A2 transgenic mice. GalNAc glycosylation of MUC1 antigen therefore facilitates uptake, MHC class II presentation, and antibody response but might block the antigen presentation to CD8+ T cells.


Asunto(s)
Presentación de Antígeno/inmunología , Neoplasias/inmunología , Neoplasias/metabolismo , Acetilgalactosamina/metabolismo , Secuencia de Aminoácidos , Animales , Especificidad de Anticuerpos/inmunología , Antígenos de Neoplasias/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular , Glicosilación , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunoglobulina G/inmunología , Activación de Linfocitos/inmunología , Ratones , Datos de Secuencia Molecular , Mucina-1/química , Mucina-1/inmunología , Mucina-1/metabolismo , Péptidos/química , Péptidos/metabolismo , Unión Proteica/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA