RESUMEN
Limitations on the number of unique protein and DNA molecules that can be characterized microscopically in a single tissue specimen impede advances in understanding the biological basis of health and disease. Here we present a multiplexed fluorescence microscopy method (MxIF) for quantitative, single-cell, and subcellular characterization of multiple analytes in formalin-fixed paraffin-embedded tissue. Chemical inactivation of fluorescent dyes after each image acquisition round allows reuse of common dyes in iterative staining and imaging cycles. The mild inactivation chemistry is compatible with total and phosphoprotein detection, as well as DNA FISH. Accurate computational registration of sequential images is achieved by aligning nuclear counterstain-derived fiducial points. Individual cells, plasma membrane, cytoplasm, nucleus, tumor, and stromal regions are segmented to achieve cellular and subcellular quantification of multiplexed targets. In a comparison of pathologist scoring of diaminobenzidine staining of serial sections and automated MxIF scoring of a single section, human epidermal growth factor receptor 2, estrogen receptor, p53, and androgen receptor staining by diaminobenzidine and MxIF methods yielded similar results. Single-cell staining patterns of 61 protein antigens by MxIF in 747 colorectal cancer subjects reveals extensive tumor heterogeneity, and cluster analysis of divergent signaling through ERK1/2, S6 kinase 1, and 4E binding protein 1 provides insights into the spatial organization of mechanistic target of rapamycin and MAPK signal transduction. Our results suggest MxIF should be broadly applicable to problems in the fields of basic biological research, drug discovery and development, and clinical diagnostics.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/diagnóstico , Neoplasias del Colon/diagnóstico , Formaldehído , Microscopía Fluorescente/métodos , Adhesión en Parafina/métodos , 3,3'-Diaminobencidina/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Hibridación Fluorescente in Situ , Receptor ErbB-2/metabolismo , Receptores Androgénicos/metabolismo , Receptores de Estrógenos/metabolismo , Estadísticas no Paramétricas , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
Classical Hodgkin lymphoma can be diagnosed with confidence in the majority of cases, but there is a significant subset that remains a diagnostic challenge. The authors have investigated the utility of a novel hyperplexing technology, MultiOmyx™, which may be applied to stain with >60 antibodies on single tissue sections from formalin-fixed paraffin-embedded tissue as an aid to the diagnosis of classical Hodgkin lymphoma. The multiplexing protocol included CD30, CD15, PAX-5, CD20, CD79a, CD45, BOB.1, OCT-2, and CD3 antibodies. The technology showed a high degree of sensitivity, specificity, and precision. Comparison studies with routine hematoxylin and eosin and immunohistochemical assessment of hematopathology cases in which classical Hodgkin lymphoma was included in the differential diagnosis showed concordance in 54 of 56 cases, with the 2 discordant cases illustrating the potential of this multiplexed immunofluorescence technology to improve on traditional immunohistochemistry for classical Hodgkin lymphoma diagnosis. This technology is practical for routine diagnosis and may be particularly useful in cases in which the sample size is limited, few Hodgkin-like cells are present, or in CD30-positive lymphoma cases with difficult morphology. MultiOmyx may potentially benefit other areas of research and diagnostic pathology.
Asunto(s)
Biomarcadores de Tumor/análisis , Técnica del Anticuerpo Fluorescente , Enfermedad de Hodgkin/metabolismo , Ganglios Linfáticos/química , Análisis de Matrices Tisulares/métodos , Biopsia con Aguja , Diagnóstico Diferencial , Herpesvirus Humano 4/genética , Enfermedad de Hodgkin/patología , Enfermedad de Hodgkin/virología , Humanos , Hibridación Fluorescente in Situ , Ganglios Linfáticos/patología , Ganglios Linfáticos/virología , Microscopía Fluorescente , Valor Predictivo de las Pruebas , Pronóstico , ARN Viral/análisisRESUMEN
Epithelial organ morphogenesis involves reciprocal interactions between epithelial and mesenchymal cell types to balance progenitor cell retention and expansion with cell differentiation for evolution of tissue architecture. Underlying submandibular salivary gland branching morphogenesis is the regulated proliferation and differentiation of perhaps several progenitor cell populations, which have not been characterized throughout development, and yet are critical for understanding organ development, regeneration, and disease. Here we applied a serial multiplexed fluorescent immunohistochemistry technology to map the progressive refinement of the epithelial and mesenchymal cell populations throughout development from embryonic day 14 through postnatal day 20. Using computational single cell analysis methods, we simultaneously mapped the evolving temporal and spatial location of epithelial cells expressing subsets of differentiation and progenitor markers throughout salivary gland development. We mapped epithelial cell differentiation markers, including aquaporin 5, PSP, SABPA, and mucin 10 (acinar cells); cytokeratin 7 (ductal cells); and smooth muscle α-actin (myoepithelial cells) and epithelial progenitor cell markers, cytokeratin 5 and c-kit. We used pairwise correlation and visual mapping of the cells in multiplexed images to quantify the number of single- and double-positive cells expressing these differentiation and progenitor markers at each developmental stage. We identified smooth muscle α-actin as a putative early myoepithelial progenitor marker that is expressed in cytokeratin 5-negative cells. Additionally, our results reveal dynamic expansion and redistributions of c-kit- and K5-positive progenitor cell populations throughout development and in postnatal glands. The data suggest that there are temporally and spatially discreet progenitor populations that contribute to salivary gland development and homeostasis.