Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 326(1): H278-H290, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038717

RESUMEN

Smoking and high-fat diet (HFD) consumption are two modifiable risk factors for cardiovascular (CV) diseases, and individuals who are overweight or obese due to unhealthy diet are more likely to use tobacco products. In this study, we aim to investigate the combined effects of nicotine (the addictive component of all tobacco products) and HFD on CV health, which are poorly understood. C57BL/6N male mice were placed on either HFD (60 kcal% fat) or regular diet (22 kcal% fat) and exposed to air or nicotine vapor for 10-12 wk. CV function was monitored by echocardiography and radiotelemetry, with left ventricular (LV) catheterization and aortic ring vasoreactivity assays performed at end point. Mice on HFD exhibited increased heart rate and impaired parasympathetic tone, whereas nicotine exposure increased sympathetic vascular tone as evidenced by increased blood pressure (BP) response to ganglionic blockade. Although neither nicotine nor HFD alone or in combination significantly altered BP, nicotine exposure disrupted circadian BP regulation with reduced BP dipping. LV catheterization revealed that combined exposure to nicotine and HFD led to LV diastolic dysfunction with increased LV end-diastolic pressure (LVEDP). Moreover, combined exposure resulted in increased inhibitory phosphorylation of endothelial nitric oxide synthase and greater impairment of endothelium-dependent vasodilation. Finally, a small cohort of C57BL/6N females with combined exposure exhibited similar increases in LVEDP, indicating that both sexes are susceptible to the combined effect of nicotine and HFD. In summary, combined exposure to nicotine and HFD leads to greater CV harm, including both additive and new-onset CV dysfunction.NEW & NOTEWORTHY Nicotine product usage and high-fat diet consumption are two modifiable risk factors for cardiovascular diseases. Here, we demonstrate that in mice, combined exposure to inhaled nicotine and high-fat diet results in unique cardiovascular consequences compared with either treatment alone, including left ventricular diastolic dysfunction, dysregulation of blood pressure, autonomic dysfunction, and greater impairment of endothelium-dependent vasorelaxation. These findings indicate that individuals who consume both nicotine products and high-fat diet have distinctive cardiovascular risks.


Asunto(s)
Dieta Alta en Grasa , Disfunción Ventricular Izquierda , Humanos , Femenino , Ratones , Masculino , Animales , Dieta Alta en Grasa/efectos adversos , Nicotina/toxicidad , Ratones Endogámicos C57BL , Vasodilatación , Presión Sanguínea , Disfunción Ventricular Izquierda/inducido químicamente
2.
Am J Physiol Heart Circ Physiol ; 323(5): H941-H948, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36206053

RESUMEN

Electronic cigarette use has increased globally prompting calls for improved understanding of nicotine's cardiovascular health effects. Our group has previously demonstrated that chronic, inhaled nicotine induces pulmonary hypertension and right ventricular (RV) remodeling in male mice, but not female mice, suggesting sex differences in nicotine-related pathology. Clinically, biological females develop pulmonary hypertension more often but have less severe disease than biological males, likely because of the cardiopulmonary protective effects of estrogen. Nicotine is also metabolized more rapidly in biological females because of differences in cytochrome-P450 activity, which are thought to be mediated by female sex hormones. These findings led us to hypothesize that female mice are protected against nicotine-induced pulmonary hypertension by an ovarian hormone-dependent mechanism. In this study, intact and ovariectomized (OVX) female mice were exposed to chronic, inhaled nicotine or room air for 12 h/day for 10-12 wk. We report no differences in serum cotinine levels between intact and OVX mice. In addition, we found no structural (RV or left ventricular dimensions and Fulton index) or functional (RV systolic pressure, pulmonary vascular resistance, cardiac output, ejection fraction, and fractional shortening) evidence of cardiopulmonary dysfunction in intact or OVX mice. We conclude that ovarian hormones do not mediate cardiopulmonary protection against nicotine-induced pulmonary hypertension. Due to profound sex differences in clinical pulmonary hypertension pathogenesis and nicotine metabolism, further studies are necessary to elucidate mechanisms underlying protection from nicotine-induced pathology in female mice.NEW & NOTEWORTHY The emergence of electronic cigarettes poses a threat to cardiovascular and pulmonary health, but the direct contribution of nicotine to these disease processes is largely unknown. Our laboratory has previously shown that chronic, inhaled nicotine induces pulmonary hypertension and right ventricular remodeling in male mice, but not female mice. This study using a bilateral ovariectomy model suggests that the cardiopulmonary protection observed in nicotine-exposed female mice may be independent of ovarian hormones.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Hipertensión Pulmonar , Disfunción Ventricular Derecha , Femenino , Masculino , Ratones , Animales , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/prevención & control , Remodelación Ventricular , Nicotina/farmacología , Función Ventricular Derecha , Cotinina/efectos adversos , Arteria Pulmonar , Estrógenos/farmacología , Hormonas Esteroides Gonadales , Citocromos/farmacología , Disfunción Ventricular Derecha/inducido químicamente , Disfunción Ventricular Derecha/prevención & control
3.
Clin Sci (Lond) ; 136(12): 973-987, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35678315

RESUMEN

Cigarette smoking remains the leading modifiable risk factor for cardiopulmonary diseases; however, the effects of nicotine alone on cardiopulmonary function remain largely unknown. Previously, we have shown that chronic nicotine vapor inhalation in mice leads to the development of pulmonary hypertension (PH) with right ventricular (RV) remodeling. The present study aims to further examine the cardiopulmonary effects of nicotine and the role of the α7 nicotinic acetylcholine receptor (α7-nAChR), which is widely expressed in the cardiovascular system. Wild-type (WT) and α7-nAChR knockout (α7-nAChR-/-) mice were exposed to room air (control) or nicotine vapor daily for 12 weeks. Consistent with our previous study, echocardiography and RV catheterization reveal that male WT mice developed increased RV systolic pressure with RV hypertrophy and dilatation following 12-week nicotine vapor exposure; in contrast, these changes were not observed in male α7-nAChR-/- mice. In addition, chronic nicotine inhalation failed to induce PH and RV remodeling in female mice regardless of genotype. The effects of nicotine on the vasculature were further examined in male mice. Our results show that chronic nicotine inhalation led to impaired acetylcholine-mediated vasodilatory response in both thoracic aortas and pulmonary arteries, and these effects were accompanied by altered endothelial nitric oxide synthase phosphorylation (enhanced inhibitory phosphorylation at threonine 495) and reduced plasma nitrite levels in WT but not α7-nAChR-/- mice. Finally, RNA sequencing revealed up-regulation of multiple inflammatory pathways in thoracic aortas from WT but not α7-nAChR-/- mice. We conclude that the α7-nAChR mediates chronic nicotine inhalation-induced PH, RV remodeling and vascular dysfunction.


Asunto(s)
Nicotina , Receptor Nicotínico de Acetilcolina alfa 7 , Acetilcolina/metabolismo , Administración por Inhalación , Animales , Aorta Torácica/efectos de los fármacos , Femenino , Masculino , Ratones , Nicotina/administración & dosificación , Arteria Pulmonar/efectos de los fármacos , Regulación hacia Arriba , Vasodilatación/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
4.
Cell Mol Neurobiol ; 42(1): 305-309, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32623546

RESUMEN

The recent outbreak of 2019 coronavirus disease (COVID-19), caused by a novel coronavirus, has now spread quickly worldwide. Like the severe acute respiratory syndrome coronavirus (SARS-CoV), this novel type of coronavirus, SARS-CoV-2, has been demonstrated to utilize angiotensin-converting enzyme 2 (ACE2) as an entry point to the cells. There is a growing body of reports indicating that COVID-19 patients, especially those in severe condition, exhibit neurological symptoms, thus supporting the possibility that SARS-CoV-2 could infect and damage neurons within the central nervous system in humans. Using human pluripotent stem cells-derived neurons, here we show the expression of ACE2 in human neurons via immunocytochemistry. From this perspective, we elaborate on the idea that the neuro-invasive potential of SARS-CoV-2 should be considered as a possible contributory factor, as well as a therapeutic target, for the severe respiratory symptoms in critical COVID-19 cases.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/enzimología , COVID-19/virología , Neuronas/enzimología , Neuronas/patología , SARS-CoV-2/fisiología , Humanos , Modelos Biológicos , Especificidad de Órganos , Células Madre Pluripotentes/metabolismo
5.
Cell Mol Neurobiol ; 42(1): 255-263, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32865675

RESUMEN

We have previously shown that angiotensin-converting enzyme 2 (ACE2), an enzyme counterbalancing the deleterious effects of angiotensin type 1 receptor activation by production of vasodilatory peptides Angiotensin (Ang)-(1-9) and Ang-(1-7), is internalized and degraded in lysosomes following chronic Ang-II treatment. However, the molecular mechanisms involved in this effect remain unknown. In an attempt to identify the accessory proteins involved in this effect, we conducted a proteomic analysis in ACE2-transfected HEK293T cells. A single protein, fascin-1, was found to differentially interact with ACE2 after Ang-II treatment for 4 h. The interactions between fascin-1 and ACE2 were confirmed by confocal microscopy and co-immunoprecipitation. Overexpression of fascin-1 attenuates the effects of Ang-II on ACE2 activity. In contrast, downregulation of fascin-1 severely decreased ACE2 enzymatic activity. Interestingly, in brain homogenates from hypertensive mice, we observed a significant reduction of fascin-1, suggesting that the levels of this protein may change in cardiovascular diseases. In conclusion, we identified fascin-1 as an ACE2-accessory protein, interacting with the enzyme in an Ang-II dependent manner and contributing to the regulation of enzyme activity.


Asunto(s)
Actinas , Enzima Convertidora de Angiotensina 2 , Proteínas Portadoras , Proteínas de Microfilamentos , Actinas/metabolismo , Angiotensina I/metabolismo , Angiotensina II/metabolismo , Animales , Proteínas Portadoras/metabolismo , Células HEK293 , Humanos , Ratones , Proteínas de Microfilamentos/metabolismo , Fragmentos de Péptidos/metabolismo , Proteómica
6.
Am J Physiol Heart Circ Physiol ; 321(2): H461-H474, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34270374

RESUMEN

An exaggerated exercise pressor reflex (EPR) causes excessive sympathoexcitation and exercise intolerance during physical activity in the chronic heart failure (CHF) state. Muscle afferent sensitization contributes to the genesis of the exaggerated EPR in CHF. However, the cellular mechanisms underlying muscle afferent sensitization in CHF remain unclear. Considering that voltage-gated potassium (Kv) channels critically regulate afferent neuronal excitability, we examined the potential role of Kv channels in mediating the sensitized EPR in male rats with CHF. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting experiments demonstrate that both mRNA and protein expressions of multiple Kv channel isoforms (Kv1.4, Kv3.4, Kv4.2, and Kv4.3) were downregulated in lumbar dorsal root ganglions (DRGs) of CHF rats compared with sham rats. Immunofluorescence data demonstrate significant decreased Kv channel staining in both NF200-positive and IB4-positive lumbar DRG neurons in CHF rats compared with sham rats. Data from patch-clamp experiments demonstrate that the total Kv current, especially IA, was dramatically decreased in medium-sized IB4-negative muscle afferent neurons (a subpopulation containing mostly Aδ neurons) from CHF rats compared with sham rats, indicating a potential functional loss of Kv channels in muscle afferent Aδ neurons. In in vivo experiments, adenoviral overexpression of Kv4.3 in lumbar DRGs for 1 wk attenuated the exaggerated EPR induced by muscle static contraction and the mechanoreflex by passive stretch without affecting the blunted cardiovascular response to hindlimb arterial injection of capsaicin in CHF rats. These data suggest that Kv channel dysfunction in DRGs plays a critical role in mediating the exaggerated EPR and muscle afferent sensitization in CHF.NEW & NOTEWORTHY The primary finding of this manuscript is that voltage-gated potassium (Kv) channel dysfunction in DRGs plays a critical role in mediating the exaggerated EPR and muscle afferent sensitization in chronic heart failure (CHF). We propose that manipulation of Kv channels in DRG neurons could be considered as a potential new approach to reduce the exaggerated sympathoexcitation and to improve exercise intolerance in CHF, which can ultimately facilitate an improved quality of life and reduce mortality.


Asunto(s)
Tolerancia al Ejercicio/fisiología , Ganglios Espinales/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Neuronas Aferentes/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Reflejo Anormal , Vías Aferentes , Animales , Modelos Animales de Enfermedad , Ganglios Espinales/metabolismo , Insuficiencia Cardíaca/metabolismo , Canal de Potasio Kv1.4/metabolismo , Masculino , Músculo Esquelético/inervación , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Reflejo , Canales de Potasio Shal/genética , Canales de Potasio Shal/metabolismo , Canales de Potasio Shaw/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 320(4): H1526-H1534, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33577434

RESUMEN

Use of electronic cigarettes is rapidly increasing among youth and young adults, but little is known regarding the long-term cardiopulmonary health impacts of these nicotine-containing devices. Our group has previously demonstrated that chronic, inhaled nicotine induces pulmonary hypertension (PH) and right ventricular (RV) remodeling in mice. These changes were associated with upregulated RV angiotensin-converting enzyme (ACE). Angiotensin II receptor blockers (ARBs) have been shown to reverse cigarette smoking-induced PH in rats. ACE inhibitor and ARB use in a large retrospective cohort of patients with PH is associated with improved survival. Here, we utilized losartan (an ARB specific for angiotensin II type 1 receptor) to further explore nicotine-induced PH. Male C57BL/6 mice received nicotine vapor for 12 h/day, and exposure was assessed using serum cotinine to achieve levels comparable to human smokers or electronic cigarette users. Mice were exposed to nicotine for 8 wk and a subset was treated with losartan via an osmotic minipump. Cardiac function was assessed using echocardiography and catheterization. Although nicotine exposure increased angiotensin II in the RV and lung, this finding was nonsignificant. Chronic, inhaled nicotine significantly increased RV systolic pressure and RV free wall thickness versus air control. These parameters were significantly lower in mice receiving both nicotine and losartan. Nicotine significantly increased RV internal diameter, with no differences seen between the nicotine and nicotine-losartan group. Neither nicotine nor losartan affected left ventricular structure or function. These findings provide the first evidence that antagonism of the angiotensin II type 1 receptor can ameliorate chronic, inhaled nicotine-induced PH and RV remodeling.NEW & NOTEWORTHY Chronic, inhaled nicotine causes pulmonary hypertension and right ventricular remodeling in mice. Treatment with losartan, an angiotensin II type 1 receptor antagonist, ameliorates nicotine-induced pulmonary hypertension and right ventricular remodeling. This novel finding provides preclinical evidence for the use of renin-angiotensin system-based therapies in the treatment of pulmonary hypertension, particularly in patients with a history of tobacco-product use.


Asunto(s)
Presión Arterial , Cigarrillo Electrónico a Vapor , Hipertensión Pulmonar/metabolismo , Hipertrofia Ventricular Derecha/metabolismo , Nicotina , Arteria Pulmonar/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Función Ventricular Derecha , Remodelación Ventricular , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Animales , Presión Arterial/efectos de los fármacos , Modelos Animales de Enfermedad , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/prevención & control , Hipertrofia Ventricular Derecha/inducido químicamente , Hipertrofia Ventricular Derecha/patología , Hipertrofia Ventricular Derecha/prevención & control , Exposición por Inhalación , Losartán/farmacología , Masculino , Ratones Endogámicos C57BL , Arteria Pulmonar/efectos de los fármacos , Arteria Pulmonar/fisiopatología , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Transducción de Señal , Factores de Tiempo , Función Ventricular Derecha/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
8.
Clin Sci (Lond) ; 135(1): 127-142, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33416084

RESUMEN

Cardiometabolic diseases (CMDs) are among the most prevalent and the highest mortality diseases. Single disease etiology such as gene mutation, polymorphisms, or environmental exposure has failed to explain the origin of CMD. This can be evident in the discrepancies in disease susceptibility among individuals exposed to the same environmental insult or who acquire the same genetic variation. Epigenetics is the intertwining of genetic and environmental factors that results in diversity in the disease course, severity, and prognosis among individuals. Environmental exposures modify the epigenome and thus provide a link for translating environmental impact on changes in gene expression and precipitation to pathological conditions. Renin-angiotensin system (RAS) is comprising genes responsible for the regulation of cardiovascular, metabolic, and glycemic functions. Epigenetic modifications of RAS genes can lead to overactivity of the system, increased sympathetic activity and autonomic dysfunction ultimately contributing to the development of CMD. In this review, we describe the three common epigenetic modulations targeting RAS components and their impact on the susceptibility to cardiometabolic dysfunction. Additionally, we highlight the therapeutic efforts of targeting these epigenetic imprints to the RAS and its effects.


Asunto(s)
Sistema Cardiovascular/fisiopatología , Ensamble y Desensamble de Cromatina , Metilación de ADN , Epigénesis Genética , Síndrome Metabólico/genética , MicroARNs/genética , Sistema Renina-Angiotensina/genética , Animales , Factores de Riesgo Cardiometabólico , Exposición a Riesgos Ambientales/efectos adversos , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Histonas/metabolismo , Humanos , Síndrome Metabólico/diagnóstico , Síndrome Metabólico/epidemiología , Síndrome Metabólico/fisiopatología , Fenotipo , Procesamiento Proteico-Postraduccional , Medición de Riesgo
9.
J Immunol ; 203(11): 3000-3012, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31645418

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) is a potent negative regulator capable of restraining overactivation of the renin-angiotensin system, which contributes to exuberant inflammation after bacterial infection. However, the mechanism through which ACE2 modulates this inflammatory response is not well understood. Accumulating evidence indicates that infectious insults perturb ACE2 activity, allowing for uncontrolled inflammation. In the current study, we demonstrate that pulmonary ACE2 levels are dynamically varied during bacterial lung infection, and the fluctuation is critical in determining the severity of bacterial pneumonia. Specifically, we found that a pre-existing and persistent deficiency of active ACE2 led to excessive neutrophil accumulation in mouse lungs subjected to bacterial infection, resulting in a hyperinflammatory response and lung damage. In contrast, pre-existing and persistent increased ACE2 activity reduces neutrophil infiltration and compromises host defense, leading to overwhelming bacterial infection. Further, we found that the interruption of pulmonary ACE2 restitution in the model of bacterial lung infection delays the recovery process from neutrophilic lung inflammation. We observed the beneficial effects of recombinant ACE2 when administered to bacterially infected mouse lungs following an initial inflammatory response. In seeking to elucidate the mechanisms involved, we discovered that ACE2 inhibits neutrophil infiltration and lung inflammation by limiting IL-17 signaling by reducing the activity of the STAT3 pathway. The results suggest that the alteration of active ACE2 is not only a consequence of bacterial lung infection but also a critical component of host defense through modulation of the innate immune response to bacterial lung infection by regulating neutrophil influx.


Asunto(s)
Inflamación/inmunología , Neutrófilos/inmunología , Peptidil-Dipeptidasa A/inmunología , Infecciones por Pseudomonas/inmunología , Pseudomonas aeruginosa/inmunología , Enzima Convertidora de Angiotensina 2 , Animales , Modelos Animales de Enfermedad , Femenino , Imidazoles/administración & dosificación , Imidazoles/farmacología , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Inflamación/tratamiento farmacológico , Inflamación/patología , Leucina/administración & dosificación , Leucina/análogos & derivados , Leucina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Pruebas de Sensibilidad Microbiana , Neutrófilos/efectos de los fármacos , Neutrófilos/patología , Peptidil-Dipeptidasa A/deficiencia , Peptidil-Dipeptidasa A/genética , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/efectos de los fármacos
10.
Clin Sci (Lond) ; 134(19): 2535-2547, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33016313

RESUMEN

The brain renin-angiotensin system (RAS) plays an important role in the regulation of autonomic and neuroendocrine functions, and maintains cardiovascular homeostasis. Ang-II is the major effector molecule of RAS and exerts most of its physiological functions, including blood pressure (BP) regulation, via activation of AT1 receptors. Dysregulation of brain RAS in the central nervous system results in increased Ang-II synthesis that leads to sympathetic outflow and hypertension. Brain angiotensin (Ang) converting enzyme-2 (ACE2) was discovered two decades ago as an RAS component, exhibiting a counter-regulatory role and opposing the adverse cardiovascular effects produced by Ang-II. Studies using synthetic compounds that can sustain the elevation of ACE2 activity or genetically overexpressed ACE2 in specific brain regions found various beneficial effects on cardiovascular function. More recently, ACE2 has been shown to play critical roles in neuro-inflammation, gut dysbiosis and the regulation of stress and anxiety-like behaviors. In the present review, we aim to highlight the anatomical locations and functional implication of brain ACE2 related to its BP regulation via modulation of the sympathetic nervous system and discuss the recent developments and future directions in the ACE2-mediated central cardiovascular regulation.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Encéfalo/enzimología , Sistema Cardiovascular/metabolismo , Animales , Humanos , Modelos Biológicos , Sistema Renina-Angiotensina , Estrés Fisiológico
11.
Circ Res ; 121(1): 43-55, 2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28512108

RESUMEN

RATIONALE: Neurogenic hypertension is characterized by an increase in sympathetic activity and often resistance to drug treatments. We previously reported that it is also associated with a reduction of angiotensin-converting enzyme type 2 (ACE2) and an increase in a disintegrin and metalloprotease 17 (ADAM17) activity in experimental hypertension. In addition, while multiple cells within the central nervous system have been involved in the development of neurogenic hypertension, the contribution of ADAM17 has not been investigated. OBJECTIVE: To assess the clinical relevance of this ADAM17-mediated ACE2 shedding in hypertensive patients and further identify the cell types and signaling pathways involved in this process. METHODS AND RESULTS: Using a mass spectrometry-based assay, we identified ACE2 as the main enzyme converting angiotensin II into angiotensin-(1-7) in human cerebrospinal fluid. We also observed an increase in ACE2 activity in the cerebrospinal fluid of hypertensive patients, which was correlated with systolic blood pressure. Moreover, the increased level of tumor necrosis factor-α in those cerebrospinal fluid samples confirmed that ADAM17 was upregulated in the brain of hypertensive patients. To further assess the interaction between brain renin-angiotensin system and ADAM17, we generated mice lacking angiotensin II type 1 receptors specifically on neurons. Our data reveal that despite expression on astrocytes and other cells types in the brain, ADAM17 upregulation during deoxycorticosterone acetate-salt hypertension occurs selectively on neurons, and neuronal angiotensin II type 1 receptors are indispensable to this process. Mechanistically, reactive oxygen species and extracellular signal-regulated kinase were found to mediate ADAM17 activation. CONCLUSIONS: Our data demonstrate that angiotensin II type 1 receptors promote ADAM17-mediated ACE2 shedding in the brain of hypertensive patients, leading to a loss in compensatory activity during neurogenic hypertension.


Asunto(s)
Proteína ADAM17/fisiología , Hipertensión/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Receptor de Angiotensina Tipo 1/fisiología , Adulto , Angiotensina II/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Animales Recién Nacidos , Células Cultivadas , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos
12.
J Physiol ; 596(24): 6235-6248, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30151830

RESUMEN

KEY POINTS: Recurrent periods of over-excitation in the paraventricular nucleus (PVN) of the hypothalamus could contribute to chronic over-activation of this nucleus and thus enhanced sympathetic drive. Stimulation of the PVN glutamatergic population utilizing channelrhodopsin-2 leads to an immediate frequency-dependent increase in baseline blood pressure. Partial lesions of glutamatergic neurons of the PVN (39.3%) result in an attenuated rise in blood pressure following Deoxycorticosterone acetate (DOCA)-salt treatment and reduced index of sympathetic activity. These data suggest that stimulation of PVN glutamatergic neurons is sufficient to cause autonomic dysfunction and drive the increase in blood pressure during hypertension. ABSTRACT: Neuro-cardiovascular dysregulation leads to increased sympathetic activity and neurogenic hypertension. The paraventricular nucleus (PVN) of the hypothalamus is a key hub for blood pressure (BP) control, producing or relaying the increased sympathetic tone in hypertension. We hypothesize that increased central sympathetic drive is caused by chronic over-excitation of glutamatergic PVN neurons. We tested how stimulation or lesioning of excitatory PVN neurons in conscious mice affects BP, baroreflex and sympathetic activity. Glutamatergic PVN neurons were unilaterally transduced with channelrhodopsin-2 using an adeno-associated virus (CamKII-ChR2-eYFP-AAV2) in wildtype mice (n = 7) to assess the impact of acute stimulation of excitatory PVN neurons selectively on resting BP in conscious mice. Stimulation of the PVN glutamatergic population resulted in an immediate frequency-dependent (2, 10 and 20 Hz) increase in BP from baseline by ∼9 mmHg at 20 Hz stimulation (P < 0.001). Additionally, in vGlut2-cre mice glutamatergic neurons of the PVN were bilaterally lesioned utilizing a cre-dependent caspase (AAV2-flex-taCASP3-TEVp). Resting BP and urinary noradrenaline (norepinephrine) levels were then recorded in conscious mice before and after DOCA-salt hypertension. Partial lesions of glutamatergic neurons of the PVN (39.3%, P < 0.05) resulted in an attenuated rise in BP following DOCA-salt treatment (P < 0.05 at 7 day time point, n = 8). Noradrenaline levels as an index of sympathetic activity between the lesion and wildtype groups showed a significant reduction after DOCA-salt treatment in the lesioned animals (P < 0.05). These experiments suggest that stimulation of PVN glutamatergic neurons is sufficient to cause autonomic dysfunction and drive the increase in BP.


Asunto(s)
Ácido Glutámico/metabolismo , Hipertensión/etiología , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/citología , Animales , Presión Sanguínea/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Channelrhodopsins/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Transportador de Glucosa de Tipo 2/metabolismo , Masculino , Ratones
13.
Am J Physiol Regul Integr Comp Physiol ; 315(5): R895-R906, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30088946

RESUMEN

Cigarette smoking is the single most important risk factor for the development of cardiovascular and pulmonary diseases (CVPD). Although cigarette smoking has been in constant decline since the 1950s, the introduction of e-cigarettes or electronic nicotine delivery systems 10 yr ago has attracted former smokers as well as a new generation of consumers. Nicotine is a highly addictive substance, and it is currently unclear whether e-cigarettes are "safer" than regular cigarettes or whether they have the potential to reverse the health benefits, notably on the cardiopulmonary system, acquired with the decline of tobacco smoking. Of great concern, nicotine inhalation devices are becoming popular among young adults and youths, emphasizing the need for awareness and further study of the potential cardiopulmonary risks of nicotine and associated products. This review focuses on the interaction between nicotine and the renin-angiotensin system (RAS), one of the most important regulatory systems on autonomic, cardiovascular, and pulmonary functions in both health and disease. The literature presented in this review strongly suggests that nicotine alters the homeostasis of the RAS by upregulating the detrimental angiotensin-converting enzyme (ACE)/angiotensin (ANG)-II/ANG II type 1 receptor axis and downregulating the compensatory ACE2/ANG-(1-7)/Mas receptor axis, contributing to the development of CVPD.


Asunto(s)
Nicotina/farmacología , Peptidil-Dipeptidasa A/efectos de los fármacos , Sistema Renina-Angiotensina/fisiología , Fumar , Animales , Humanos , Peptidil-Dipeptidasa A/metabolismo , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Receptor de Angiotensina Tipo 1/metabolismo , Productos de Tabaco
14.
Clin Sci (Lond) ; 132(14): 1513-1527, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-29903768

RESUMEN

TRV027 is a biased agonist for the Angiotensin (Ang)-II type 1 receptor (AT1R), able to recruit ß-arrestin 2 independently of G-proteins activation. ß-arrestin activation in the central nervous system (CNS) was suggested to oppose the effects of Ang-II. The present study evaluates the effect of central infusion of TRV027 on arterial pressure (AP), autonomic function, baroreflex sensitivity (BRS), and peripheral vascular reactivity. Spontaneously hypertensive (SH) and Wistar Kyoto (WKY) rats were treated with TRV027 for 14 days (20 ng/h) delivered to the lateral ventricle via osmotic minipumps. Mechanistic studies were performed in HEK293T cells co-transfected with AT1R and Ang converting enzyme type 2 (ACE2) treated with TRV027 (100 nM) or Ang-II (100 nM). TRV027 infusion in SH rats (SHR) reduced AP (~20 mmHg, P<0.05), sympathetic vasomotor activity (ΔMAP = -47.2 ± 2.8 compared with -64 ± 5.1 mmHg, P<0.05) and low-frequency (LF) oscillations of AP (1.7 ± 0.2 compared with 5.8 ± 0.4 mmHg, P<0.05) compared with the SHR control group. TRV027 also increased vagal tone, improved BRS, reduced the reactivity of mesenteric arteries to Ang-II and increased vascular sensitivity to phenylephrine (Phe), acetylcholine, (ACh), and sodium nitroprusside (SNP). In vitro, TRV027 prevented the Ang-II-induced up-regulation of ADAM17 and in contrast with Ang-II, had no effects on ACE2 activity and expression levels. Furthermore, TRV027 induced lesser interactions between AT1R and ACE2 compared with Ang-II. Together, these data suggest that due to its biased activity for the ß-arrestin pathway, TRV027 has beneficial effects within the CNS on hypertension, autonomic and vascular function, possibly through preserving ACE2 compensatory activity in neurones.


Asunto(s)
Barorreflejo/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Arterias Mesentéricas/efectos de los fármacos , Oligopéptidos/farmacología , Angiotensina II/farmacología , Enzima Convertidora de Angiotensina 2 , Animales , Barorreflejo/fisiología , Presión Sanguínea/fisiología , Células HEK293 , Humanos , Hipertensión/fisiopatología , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/fisiología , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica/efectos de los fármacos , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Receptor de Angiotensina Tipo 1/metabolismo , Vasoconstrictores/farmacología
15.
Cell Mol Neurobiol ; 38(6): 1235-1243, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29766392

RESUMEN

The excitotoxicity of glutamate plays an important role in the progression of various neurological disorders via participating in inflammation and neuronal damage. In this study, we identified the role of excessive glutamate stimulation in the modulation of angiotensin-converting enzyme type 2 (ACE2), a critical component in the compensatory axis of the renin-angiotensin system (RAS). In primary cultured cortical neurons, high concentration of glutamate (100 µM) significantly reduced the enzymatic activity of ACE2. The elevated activity of ADAM17, a member of the 'A Disintegrin And Metalloprotease' (ADAM) family, was found to contribute to this glutamate-induced ACE2 down-regulation. The decrease of ACE2 activity could be prevented by pre-treatment with antagonists targeting ionotropic glutamate receptors. In addition, the glutamate-induced decrease in ACE2 activity was significantly attenuated when the neurons were co-treated with MitoTEMPOL or blockers that target oxidative stress-mediated signaling pathway. In summary, our study reveals a strong relationship between excessive glutamate stimulation and ADAM17-mediated impairment in ACE2 activity, suggesting a possible cross-talk between glutamate-induced excitotoxicity and dysregulated RAS.


Asunto(s)
Proteína ADAM17/metabolismo , Corteza Cerebral/citología , Ácido Glutámico/farmacología , Neuronas/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Células Cultivadas , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo II/metabolismo , Especies Reactivas de Oxígeno/metabolismo
16.
Cell Mol Neurobiol ; 38(1): 233-242, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28478572

RESUMEN

Although the deleterious influence of protein deficiency on fetal programming is well documented, the impact of a Western diet on epigenetic mechanisms is less clear. We hypothesized that high-fat high-sucrose diet (HFHSD) consumption during pregnancy leads to epigenetic modifications within the progeny's compensatory renin-angiotensin system (RAS), affecting autonomic and metabolic functions. Dams were fed HFHSD (45% fat and 30% sucrose) or regular chow (RD) from mating until weaning of the pups (~7 weeks). Offspring from both groups were then maintained on chow and studied in adulthood (3-7 months). Offspring from HFHSD-exposed dams (OH) exhibited no difference in body weight or fasting blood glucose compared to controls (OR). In 3-month-old offspring, DNA methylation was significantly lower for the ACE2 gene (P < 0.05) in the brainstem, kidney and cecum. Moreover, ACE2 activity in the hypothalamus was increased at 7 months (OH: 91 ± 1 vs. OR: 74 ± 4 AFU/mg/min, P < 0.05). Although baseline blood pressure was not different between groups, vagal tone in OH was significantly impaired compared to OR. At the same time, OH offspring had a 1.7-fold increase in AT1a receptor expression and a 1.3-fold increase in ADAM17 mRNA. DOCA-salt treatment further revealed and exacerbated hypertensive response in the OH progeny (OH: 130 ± 6 vs. OR: 108 ± 3 mmHg, P < 0.05). Taken together, our data suggest that perinatal exposure to HFHSD resulted in epigenetic modifications of the compensatory brain RAS, potentially affecting plasticity of neuronal networks leading to autonomic dysfunction in the male offspring.


Asunto(s)
Presión Sanguínea/fisiología , Dieta Occidental/efectos adversos , Epigénesis Genética/fisiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Factores de Edad , Animales , Animales Recién Nacidos , Glucemia/metabolismo , Peso Corporal/fisiología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Metilación de ADN/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Sistema Renina-Angiotensina/fisiología
17.
Am J Physiol Cell Physiol ; 312(2): C119-C130, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27903586

RESUMEN

MicroRNA-125a-5p (miR-125a-5p) could participate in the pathogenesis of vascular diseases. In this study, we investigated the role of miR-125a-5p in oxidized low-density lipoprotein (ox-LDL)-induced functional changes in human brain microvessel endothelial cells (HBMEC). The reactive oxygen species (ROS) production, nitric oxide (NO) generation, senescence, apoptosis, and functions of HBMEC were analyzed. For mechanism study, the epidermal growth factor receptor (EGFR)/extracellular signal-regulated protein kinase (ERK)/p38 mitogen-activated protein kinase (p38 MAPK) pathway and phosphatidylinositol-3-kinase (PI3K)/serine/threonine kinase (Akt)/endothelial nitric oxide synthase (eNOS) pathway were analyzed. Results showed the following: 1) Expression of miR-125a-5p was reduced in ox-LDL-treated HBMEC. 2) Overexpression of miR-125a-5p protected HBMEC from ox-LDL-induced apoptosis, senescence, ROS production, and NO reduction. 3) Overexpression of miR-125a-5p increased HBMEC proliferation, migration, and tube formation, while decreasing HBMEC adhesion to leukocytes, as well as counteracting the effects of ox-LDL on those functions. 4) The levels of EGFR/ERK/p38 MAPK pathway, PI3K/Akt/eNOS pathway, cleaved caspase-3, and adherent molecular ICAM-1 and VCAM-1 were associated with the effects of ox-LDL on these HBMEC functions. In conclusion, miR-125a-5p could counteract the effects of ox-LDL on various HBMEC functions via regulating the EGFR/ERK/p38 MAPK and PI3K/Akt/eNOS pathways and cleaved caspase-3, ICAM-1, and VCAM-1 expression.


Asunto(s)
Arterias Cerebrales/fisiología , Células Endoteliales/fisiología , Lipoproteínas LDL/metabolismo , MicroARNs/metabolismo , Microvasos/fisiología , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/fisiología , Células Cultivadas , Arterias Cerebrales/citología , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Microvasos/citología , Neovascularización Fisiológica/fisiología , Óxido Nítrico/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo
18.
Curr Hypertens Rep ; 19(4): 32, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28353076

RESUMEN

Hypertension is a multifaceted disease that is involved in ∼40% of cardiovascular mortalities and is the result of both genetic and environmental factors. Because of its complexity, hypertension has been studied by using various models and approaches, each of which tends to focus on individual organs or tissues to isolate the most critical and treatable causes of hypertension and the related damage to end-organs. Animal models of hypertension have ranged from Goldblatt's kidney clip models in which the origin of the disease is clearly renal to animals that spontaneously develop hypertension either through targeted genetic manipulations, such as the TGR(mRen2)27, or selective breeding resulting in more enigmatic origins, as exemplified by the spontaneously hypertensive rat (SHR). These two genetically derived models simulate the less-common human primary hypertension in which research has been able to define a Mendelian linkage. Several models are more neurogenic or endocrine in nature and illustrate that crosstalk between the nervous system and hormones can cause a significant rise in blood pressure (BP). This review will examine one of these neurogenic models of hypertension, i.e., the deoxycorticosterone acetate (DOCA), reduced renal mass, and high-salt diet (DOCA-salt) rodent model, one of the most common experimental models used today. Although the DOCA-salt model is mainly believed to be neurogenic and has been shown to impact the central and peripheral nervous systems, it also significantly involves many other body organs.


Asunto(s)
Acetato de Desoxicorticosterona/uso terapéutico , Hipertensión/tratamiento farmacológico , Animales , Presión Sanguínea , Humanos , Hipertensión/fisiopatología , Riñón/fisiopatología , Cloruro de Sodio Dietético
19.
Am J Physiol Regul Integr Comp Physiol ; 311(6): R1223-R1233, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27806985

RESUMEN

While restoration of ACE2 activity in the pancreas leads to improvement of glycemia in experimental models of Type 2 diabetes, global deficiency in ACE2 disrupts ß-cell function and impairs glucose tolerance in mice, demonstrating the physiological role of ACE2 in glucose homeostasis. Although the contribution of pancreatic ACE2 to glucose regulation has been demonstrated in genetic models of diabetes and in models with overexpression of the renin-angiotensin system (RAS), it is unclear whether islet ACE2 is involved in glycemic control in common models of human Type 2 diabetes. To determine whether diet-induced diabetes deregulates glucose homeostasis via reduction of ACE2 in the pancreatic islets, wild-type (WT) and ACE2 knockout (KO) male mice were fed a high-fat diet (HFD) for 16 wk. ACE2 KO mice were more susceptible than WT mice to HFD-mediated glycemic dysregulation. Islet ACE2 activity and expression of various genes, including ANG II type 1a receptor (mAT1aR) were then assessed. Surprisingly, we observed no change in islet ACE2 activity and expression despite local RAS overactivity, indicated by an upregulation of mAT1aR expression. Despite a predominant expression in islet α-cells, further investigation highlighted a minor role for ACE2 on glucagon expression. Further, pancreatic ACE2 gene therapy improved glycemia in HFD-fed WT mice, leading to enhanced glucose-stimulated insulin secretion, reduced pancreatic ANG II levels, fibrosis, and ADAM17 activity. Altogether, our study demonstrates that HFD feeding increases RAS activity and mediates glycemic dysregulation likely through loss of ACE2 present outside the islets but independently of changes in islet ACE2.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Trastornos del Metabolismo de la Glucosa/etiología , Trastornos del Metabolismo de la Glucosa/metabolismo , Glucosa/metabolismo , Islotes Pancreáticos/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Grasas de la Dieta/efectos adversos , Insulina/metabolismo , Resistencia a la Insulina , Secreción de Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
20.
Am J Physiol Heart Circ Physiol ; 309(5): H926-34, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26254330

RESUMEN

We previously reported that type 2 angiotensin-converting enzyme (ACE2) compensatory activity is impaired by the disintegrin and metalloprotease 17 (ADAM17), and lack of ACE2 is associated with oxidative stress in neurogenic hypertension. To investigate the relationship between ADAM17 and oxidative stress, Neuro2A cells were treated with ANG II (100 nM) 24 h after vehicle or α-lipoic acid (LA, 500 µM). ADAM17 expression was increased by ANG II (120.5 ± 9.1 vs. 100.2 ± 0.8%, P < 0.05) and decreased after LA (69.0 ± 0.3 vs. 120.5 ± 9.1%, P < 0.05). In another set of experiments, LA reduced ADAM17 (92.9 ± 5.3 vs. 100.0 ± 11.2%, P < 0.05) following its overexpression. Moreover, ADAM17 activity was reduced by LA in ADAM17-overexpressing cells [109.5 ± 19.8 vs. 158.0 ± 20.0 fluorescence units (FU)·min(-1)·µg protein(-1), P < 0.05], in which ADAM17 overexpression increased oxidative stress (114.1 ± 2.5 vs. 101.0 ± 1.0%, P < 0.05). Conversely, LA-treated cells attenuated ADAM17 overexpression-induced oxidative stress (76.0 ± 9.1 vs. 114.1 ± 2.5%, P < 0.05). In deoxycorticosterone acetate (DOCA)-salt hypertensive mice, a model in which ADAM17 expression and activity are increased, hypertension was blunted by pretreatment with LA (119.0 ± 2.4 vs. 131.4 ± 2.2 mmHg, P < 0.05). In addition, LA improved dysautonomia and baroreflex sensitivity. Furthermore, LA blunted the increase in NADPH oxidase subunit expression, as well as the increase in ADAM17 and decrease in ACE2 activity in the hypothalamus of DOCA-salt hypertensive mice. Taken together, these data suggest that LA might preserve ACE2 compensatory activity by breaking the feedforward cycle between ADAM17 and oxidative stress, resulting in a reduction of neurogenic hypertension.


Asunto(s)
Proteínas ADAM/metabolismo , Antioxidantes/farmacología , Hipertensión/metabolismo , Estrés Oxidativo , Ácido Tióctico/farmacología , Proteínas ADAM/genética , Proteína ADAM17 , Angiotensina II/farmacología , Enzima Convertidora de Angiotensina 2 , Animales , Antioxidantes/uso terapéutico , Barorreflejo , Línea Celular Tumoral , Hipertensión/tratamiento farmacológico , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , NADPH Oxidasas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Ácido Tióctico/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA