Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Semin Cancer Biol ; 80: 340-355, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-32977006

RESUMEN

As cancer poses a significant threat to the well-being of humans on a global scale, many researchers have embarked on the search for effective anticancer therapeutic agents. In recent years, many drugs have been shown to have extraordinary anticancer effects. However, in a lot of cases the treatment is accompanied by undesirable side effects due to some intrinsic properties linked to the therapeutic agents, such as poor targeting selectivity and short half-life in the circulation. In this regard, extracellular vesicles (EVs), a diverse family of natural cell-derived vesicles, steal the show as potential anticancer immunotherapy or delivery vectors of anticancer agents since they are an innate mechanism of intercellular communication. Here, we describe some of the most hotly-debated issues regarding the use of EVs as anticancer therapeutics. First, we review the biology of EVs providing the most up-to-date definition of EVs as well as highlighting their circulation kinetics and homing properties. Next, we share our views on popular methods reported for EV isolation, characterization, and functional analysis. Pioneering and innovative reports along with emerging challenges in the field of EV imaging and EV drug loading strategies are then discussed. Finally, we examine in detail the therapeutic application of EVs in cancer treatment, including their role in cancer immunotherapy and as natural delivery systems for anticancer agents including natural compounds such as paclitaxel and doxorubicin. We consider standardised protocols and proper analytical approaches to be crucial in improving the reproducibility and rigor in EV research and ensuring the successful translation of EVs as anticancer therapeutics.


Asunto(s)
Antineoplásicos , Vesículas Extracelulares , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Portadores de Fármacos/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos , Humanos , Neoplasias/tratamiento farmacológico , Reproducibilidad de los Resultados
2.
Pharmacol Res ; 188: 106665, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36657503

RESUMEN

Extracellular vesicles hold great promise as a drug delivery platform for RNA-based therapeutics. However, there is a lack of experimental evidence for the intracellular trafficking of nucleic acid cargos, specifically, whether they are capable of escaping from the endolysosomal confinement in the recipient cells to be released into the cytosol and hence, interact with their cytoplasmic targets. Here, we demonstrated how red blood cell-derived extracellular vesicles (RBCEVs) release their therapeutic RNA/DNA cargos at specific intracellular compartments characteristic of late endosomes and lysosomes. The released cargos were functional and capable of knocking down genes of interest in recipient cells, resulting in tumor suppression in vitro and in an acute myeloid leukemia murine model without causing significant toxicity. Notably, surface functionalization of RBCEVs with an anti-human CXCR4 antibody facilitated their specific uptake by CXCR4+ leukemic cells, leading to enhanced gene silencing efficiency. Our results provide insights into the cellular uptake mechanisms and endosomal escape routes of nucleic acid cargos delivered by RBCEVs which have important implications for further improvements of the RBCEV-based delivery system.


Asunto(s)
Vesículas Extracelulares , Ácidos Nucleicos , Animales , Ratones , Endosomas , Sistemas de Liberación de Medicamentos , ARN
3.
J Extracell Vesicles ; 12(8): e12354, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553837

RESUMEN

Extracellular vesicles (EVs) can be produced from red blood cells (RBCs) on a large scale and used to deliver therapeutic payloads efficiently. However, not much is known about the native biological properties of RBCEVs. Here, we demonstrate that RBCEVs are primarily taken up by macrophages and monocytes. This uptake is an active process, mediated mainly by endocytosis. Incubation of CD14+ monocytes with RBCEVs induces their differentiation into macrophages with an Mheme-like phenotype, characterized by upregulation of heme oxygenase-1 (HO-1) and the ATP-binding cassette transporter ABCG1. Moreover, macrophages that take up RBCEVs exhibit a reduction in surface CD86 and decreased secretion of TNF-α under inflammatory stimulation. The upregulation of HO-1 is attributed to heme derived from haemoglobin in RBCEVs. Heme is released from internalized RBCEVs in late endosomes and lysosomes via the heme transporter, HRG1. Consequently, RBCEVs exhibit the ability to attenuate foam cell formation from oxidized low-density lipoproteins (oxLDL)-treated macrophages in vitro and reduce atherosclerotic lesions in ApoE knockout mice on a high-fat diet. In summary, our study reveals the uptake mechanism of RBCEVs and their delivery of heme to macrophages, suggesting the potential application of RBCEVs in the treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , Vesículas Extracelulares , Animales , Ratones , Células Espumosas/metabolismo , Células Espumosas/patología , Hemo/metabolismo , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo , Eritrocitos/metabolismo , Endocitosis
4.
Theranostics ; 13(2): 621-638, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36632230

RESUMEN

Rationale: Metastasis is a complex process with a molecular underpinning that remains unclear. We hypothesize that cargo proteins conducted by extracellular vesicles (EVs) released from tumors may confer growth and metastasis potential on recipient cells. Here, we report that a cytokine-like secreted protein, FAM3C, contributes to late-stage lung tumor progression. Methods: EV protein profiling was conducted with an unbiased proteomic mass spectrometry analysis on non-small cell lung cancer (NSCLC) and normal lung fibroblast cell lines. Expression of FAM3C was confirmed in a panel of NSCLC cell lines, and correlated to the invasive and metastatic potentials. Functional phenotype of endogenous FAM3C and tumor-derived EVs (TDEs) were further investigated using various biological approaches in RNA and protein levels. Metastasis potential of TDEs secreted by FAM3C-overexpressing carcinoma cells was validated in mouse models. Results: Transcriptomic meta-analysis of pan-cancer datasets confirmed the overexpression of FAM3C - a gene encoding for interleukin-like EMT inducer (ILEI) - in NSCLC tumors, with strong association with poor patient prognosis and cancer metastasis. Aberrant expression of FAM3C in lung carcinoma cells enhances cellular transformation and promotes distant lung tumor colonization. In addition, higher FAM3C concentrations were detected in EVs extracted from plasma samples of NSCLC patients compared to those of healthy subjects. More importantly, we defined a hitherto-unknown mode of microenvironmental crosstalk involving FAM3C in EVs, whereby the delivery and uptake of FAM3C via TDEs enhances oncogenic signaling - in recipient cells that phenocopies the cell-endogenous overexpression of FAM3C. The oncogenicity transduced by FAM3C is executed via a novel interaction with the Ras-related protein RalA, triggering the downstream activation of the Src/Stat3 signaling cascade. Conclusions: Our study describes a novel mechanism for FAM3C-driven carcinogenesis and shed light on EV FAM3C as a driver for metastatic lung tumors that could be exploited for cancer therapeutics.


Asunto(s)
Carcinogénesis , Carcinoma de Pulmón de Células no Pequeñas , Vesículas Extracelulares , Neoplasias Pulmonares , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/secundario , Línea Celular Tumoral , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteómica
5.
ACS Nano ; 17(21): 21639-21661, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37852618

RESUMEN

The COVID-19 pandemic has resulted in a large number of fatalities and, at present, lacks a readily available curative treatment for patients. Here, we demonstrate that unmodified red blood cell-derived extracellular vesicles (RBCEVs) can inhibit SARS-CoV-2 infection in a phosphatidylserine (PS) dependent manner. Using T cell immunoglobulin mucin domain-1 (TIM-1) as an example, we demonstrate that PS receptors on cells can significantly increase the adsorption and infection of authentic and pseudotyped SARS-CoV-2 viruses. RBCEVs competitively inhibit this interaction and block TIM-1-mediated viral entry into cells. We further extend the therapeutic efficacy of this antiviral treatment by loading antisense oligonucleotides (ASOs) designed to target conserved regions of key SARS-CoV-2 genes into RBCEVs. We establish that ASO-loaded RBCEVs are efficiently taken up by cells in vitro and in vivo to suppress SARS-CoV-2 replication. Our findings indicate that this RBCEV-based SARS-CoV-2 therapeutic displays promise as a potential treatment capable of inhibiting SARS-CoV-2 entry and replication.


Asunto(s)
COVID-19 , Vesículas Extracelulares , Humanos , Antivirales/farmacología , Oligonucleótidos , Pandemias , SARS-CoV-2 , Eritrocitos
6.
J Extracell Vesicles ; 11(4): e12187, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35430766

RESUMEN

The RIG-I pathway can be activated by RNA containing 5' triphosphate, leading to type I interferon release and immune activation. Hence, RIG-I agonists have been used to induce immune responses against cancer as potential immunotherapy. However, delivery of 5' triphosphorylated RNA molecules as RIG-I agonists to tumour cells in vivo is challenging due to the susceptibility of these molecules to degradation. In this study, we demonstrate the use of extracellular vesicles (EVs) from red blood cells (RBCs), which are highly amenable for RNA loading and taken up robustly by cancer cells, for RIG-I agonist delivery. We evaluate the anti-cancer activity of two novel RIG-I agonists, the immunomodulatory RNA (immRNA) with a unique secondary structure for efficient RIG-I activation, and a 5' triphosphorylated antisense oligonucleotide with dual function of RIG-I activation and miR-125b inhibition (3p-125b-ASO). We find that RBCEV-delivered immRNA and 3p-125b-ASO trigger the RIG-I pathway, and induce cell death in both mouse and human breast cancer cells. Furthermore, we observe a significant suppression of tumour growth coupled with increased immune cell infiltration mediated by the activation of RIG-I cascade after multiple intratumoral injections of RBCEVs loaded with immRNA or 3p-125b-ASO. Targeted delivery of immRNA using RBCEVs with EGFR-binding nanobody administrated via intrapulmonary delivery facilitates the accumulation of RBCEVs in metastatic cancer cells, leading to potent tumour-specific CD8+ T cells immune response. This contributes to prominent suppression of breast cancer metastasis in the lung. Hence, this study provides a new strategy for efficient RIG-I agonist delivery using RBCEVs for immunotherapy against cancer and cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Vesículas Extracelulares , Melanoma , Animales , Neoplasias de la Mama/tratamiento farmacológico , Linfocitos T CD8-positivos , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Factores Inmunológicos/metabolismo , Inmunoterapia , Melanoma/metabolismo , Ratones , ARN/metabolismo , Neoplasias Cutáneas , Melanoma Cutáneo Maligno
7.
Theranostics ; 12(7): 3288-3315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547755

RESUMEN

The advent of novel therapeutics in recent years has urged the need for a safe, non-immunogenic drug delivery vector capable of delivering therapeutic payloads specifically to diseased cells, thereby increasing therapeutic efficacy and reducing side effects. Extracellular vesicles (EVs) have garnered attention in recent years as a potentially ideal vector for drug delivery, taking into account their intrinsic ability to transfer bioactive cargo to recipient cells and their biocompatible nature. However, natural EVs are limited in their therapeutic potential and many challenges need to be overcome before engineered EVs satisfy the levels of efficiency, stability, safety and biocompatibility required for therapeutic use. Here, we demonstrate that an enzyme-mediated surface functionalization method in combination with streptavidin-mediated conjugation results in efficient surface functionalization of EVs. Surface functionalization using the above methods permits the stable and biocompatible conjugation of peptides, single domain antibodies and monoclonal antibodies at high copy number on the EV surface. Functionalized EVs demonstrated increased accumulation in target cells expressing common cancer associated markers such as CXCR4, EGFR and EpCAM both in vitro and in vivo. The functionality of this approach was further highlighted by the ability of targeting EVs to specifically deliver therapeutic antisense oligonucleotides to a metastatic breast tumor model, resulting in increased knockdown of a targeted oncogenic microRNA and improved metastasis suppression. The method was also used to equip EVs with a bifunctional peptide that targets EVs to leukemia cells and induces apoptosis, leading to leukemia suppression. Moreover, we conducted extensive testing to verify the biocompatibility, and safety of engineered EVs for therapeutic use, suggesting that surface modified EVs can be used for repeated dose treatment with no detectable adverse effects. This modular, biocompatible method of EV engineering offers a promising avenue for the targeted delivery of a range of therapeutics while addressing some of the safety concerns associated with EV-based drug delivery.


Asunto(s)
Vesículas Extracelulares , Leucemia , Neoplasias , Sistemas de Liberación de Medicamentos/métodos , Vesículas Extracelulares/química , Humanos , Neoplasias/tratamiento farmacológico , Péptidos
8.
Cancers (Basel) ; 13(2)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33477629

RESUMEN

Distant organ metastases accounts for the majority of breast cancer deaths. Given the prevalence of breast cancer in women, it is imperative to understand the underlying mechanisms of its metastatic progression and identify potential targets for therapy. Since their discovery in 1993, microRNAs (miRNAs) have emerged as important regulators of tumour progression and metastasis in various cancers, playing either oncogenic or tumour suppressor roles. In the following review, we discuss the roles of miRNAs that potentiate four key areas of breast cancer metastasis-angiogenesis, epithelial-mesenchymal transition, the Warburg effect and the tumour microenvironment. We then evaluate the recent developments in miRNA-based therapies in breast cancer, which have shown substantial promise in controlling tumour progression and metastasis. Yet, certain challenges must be overcome before these strategies can be implemented in clinical trials.

9.
Cancer Lett ; 500: 253-262, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33221454

RESUMEN

H19 long non-coding RNA (lncRNA) has many functions in cancer. Some studies have reported that H19 acts as an oncogene and is involved in cancer progression by activating epithelial-mesenchymal transition (EMT), the cell cycle and angiogenesis via mechanisms like microRNA (miRNA) sponging - the binding to and inhibition of miRNA activity. This makes H19 lncRNA a potential target for cancer therapeutics. However, several conflicting studies have also found that H19 suppresses tumour development. In this review, we shed light on the possible reasons for these conflicting findings. We also summarise the current literature on the applications of H19 lncRNA in cancer therapy in many cancers and explore new avenues for future research. This includes the use of H19 in recombinant vectors, chemoresistance, epigenetic regulation, tumour microenvironment alteration and cancer immunotherapy. The relationship between H19 and the master tumour suppressor gene p53 is also explored. In most studies, H19 knockdown via RNA interference (RNAi) or epigenetic silencing inhibits cancer development. Thus, H19 lncRNA could be a promising target for the development of cancer therapeutics. This warrants further investigations into its translational research to improve cancer therapy outcomes.


Asunto(s)
Proliferación Celular/genética , Neoplasias/genética , ARN Largo no Codificante/genética , Microambiente Tumoral/genética , Biomarcadores de Tumor/genética , Epigénesis Genética/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología
10.
Cells ; 9(3)2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32183236

RESUMEN

During the development of the central nervous system, the proliferation of neural progenitors and differentiation of neurons and glia are tightly regulated by different transcription factors and signaling cascades, such as the Wnt and Shh pathways. This process takes place in cooperation with several microRNAs, some of which evolutionarily conserved in vertebrates, from teleosts to mammals. We focused our attention on miR-7, as its role in the regulation of cell signaling during neural development is still unclear. Specifically, we used human stem cell cultures and whole zebrafish embryos to study, in vitro and in vivo, the role of miR-7 in the development of dopaminergic (DA) neurons, a cell type primarily affected in Parkinson's disease. We demonstrated that the zebrafish homologue of miR-7 (miR-7a) is expressed in the forebrain during the development of DA neurons. Moreover, we identified 143 target genes downregulated by miR-7, including the neural fate markers TCF4 and TCF12, as well as the Wnt pathway effector TCF7L2. We then demonstrated that miR-7 negatively regulates the proliferation of DA-progenitors by inhibiting Wnt/ß-catenin signaling in zebrafish embryos. In parallel, miR-7 positively regulates Shh signaling, thus controlling the balance between oligodendroglial and DA neuronal cell fates. In summary, this study identifies a new molecular cross-talk between Wnt and Shh signaling pathways during the development of DA-neurons. Being mediated by a microRNA, this mechanism represents a promising target in cell differentiation therapies for Parkinson's disease.


Asunto(s)
Neuronas Dopaminérgicas/citología , MicroARNs/metabolismo , Neurogénesis/genética , Oligodendroglía/citología , Transducción de Señal , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Neuronas Dopaminérgicas/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Humanos , MicroARNs/genética , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Oligodendroglía/metabolismo , Prosencéfalo/metabolismo , Transducción de Señal/genética , Células Madre/citología , Células Madre/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
11.
J Extracell Vesicles ; 8(1): 1599680, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31044053

RESUMEN

Tumour cells release large quantities of extracellular vesicles (EVs) to mediate their interactions with other cells in the tumour microenvironment. To identify host cells that naturally take up EVs from tumour cells, we created breast cancer cell lines secreting fluorescent EVs. These fluorescent EVs are taken up most robustly by fibroblasts within the tumour microenvironment. RNA sequencing indicated that miR-125b is one of the most abundant microRNAs secreted by mouse triple-negative breast cancer 4T1 and 4TO7 cells. Treatment with 4T1 EVs leads to an increase in fibroblast activation in isogenic 4TO7 tumours, which is reversed by blocking miR-125b in 4T1 EVs; hence, miR-125b delivery by EVs is responsible for fibroblast activation in mouse tumour models. miR-125b is also secreted by human breast cancer cells and the uptake of EVs from these cells significantly increases cellular levels of miR-125b and expression of multiple cancer-associated fibroblast markers in resident fibroblasts. Overexpression of miR-125b in both mouse and human fibroblasts leads to an activated phenotype similar to the knockdown of established miR-125b target mRNAs. These data indicate that miR-125b is transferred through EVs from breast cancer cells to normal fibroblasts within the tumour microenvironment and contributes to their development into cancer-associated fibroblasts.

12.
Cell Stress ; 2(9): 239-241, 2018 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31225493

RESUMEN

One of the major challenges of RNA-based therapeutics is the method for delivery of RNA molecules. In a recent article (Nat Commun 9(1):2359), we described a novel delivery platform for RNA-based drugs using red blood cell extracellular vesicles which can efficiently deliver both small and large RNAs to solid and liquid tumours. Our RBCEVs platform features exceptional merits over conventional RNA delivery methods in biosafety, biocompatibility, efficiency, accessibility, and cost effectiveness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA