Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(7): 1756-1768.e17, 2018 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-30550785

RESUMEN

Irisin is secreted by muscle, increases with exercise, and mediates certain favorable effects of physical activity. In particular, irisin has been shown to have beneficial effects in adipose tissues, brain, and bone. However, the skeletal response to exercise is less clear, and the receptor for irisin has not been identified. Here we show that irisin binds to proteins of the αV class of integrins, and biophysical studies identify interacting surfaces between irisin and αV/ß5 integrin. Chemical inhibition of the αV integrins blocks signaling and function by irisin in osteocytes and fat cells. Irisin increases both osteocytic survival and production of sclerostin, a local modulator of bone remodeling. Genetic ablation of FNDC5 (or irisin) completely blocks osteocytic osteolysis induced by ovariectomy, preventing bone loss and supporting an important role of irisin in skeletal remodeling. Identification of the irisin receptor should greatly facilitate our understanding of irisin's function in exercise and human health.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Remodelación Ósea , Fibronectinas/metabolismo , Integrina alfaV/metabolismo , Osteocitos/metabolismo , Osteólisis/metabolismo , Adipocitos/patología , Animales , Línea Celular Tumoral , Femenino , Fibronectinas/genética , Células HEK293 , Humanos , Integrina alfaV/genética , Ratones , Osteocitos/patología , Osteólisis/genética
3.
Surg Endosc ; 36(9): 6984-6996, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35226161

RESUMEN

BACKGROUND: Bariatric surgery has been shown to result in weight loss, improved hemoglobin A1C, and decreased mortality but can also lead to bone loss and increased fracture rates. Serum IGFBP-2 is elevated in patients after bariatric surgery and although it may lead to improved blood glucose, may also drive bone resorption, and inhibit IGF-I action. This study tested the hypothesis that Igfbp2-/- mice were acutely protected from bone loss after vertical sleeve gastrectomy (VSG). METHODS: Thirty-four mice, 17 Igfbp2-/- and 17 + / + underwent a hand-sewn VSG or sham surgery, at 16 weeks of age. Mice were harvested at 20 weeks of age. DXA was measured for body composition, areal bone mineral density (aBMD), areal bone mineral content (aBMC), femoral bone mineral density (fBMD), and femoral bone mineral content (fBMC) at 15, 18, and 20 weeks of age. Micro-computed tomography and serum ELISA assays were measured and analyzed at 20 weeks of age. RESULTS: Both Igfbp2-/- and + / + mice lost significant weight (P = 0.0251, P = 0.0003, respectively) and total fat mass (P = 0.0082, P = 0.0004, respectively) at 4 weeks after VSG. Igfbp2+/+ mice lost significant aBMD, fBMD, fBMC, trabecular BMD, trabecular BV/TV and cortical tissue mineral density (P = 0.0150, P = 0.0313, P = 0.0190, P = 0.0072, and 0.0320 respectively). The Igfbp2-/- mice did not show significant bone loss in these parameters nor in trabecular BV/TV. Both Igfbp2-/- and + / + mice had less cortical bone area (P = 0.0181, P = < .00001), cortical area over total area (P = 0.0085, P = 0.0007), and cortical thickness (P = 0.0050, P = < 0.0001), respectively. Igfbp2+/+ mice demonstrated significantly lower polar, minimum, and maximum moments of inertia (P = 0.0031, P = 0.0239, and P = 0.0037, respectively). Igfbp2+/+ had significantly higher levels of IGFBP-2 at 2 weeks postoperatively after VSG (P = 0.035), and elevated levels of CTx and P1NP (P = 0.0127, P = 0.0058, respectively). CONCLUSIONS: Igfbp2-/- mice were protected against trabecular bone loss and had attenuated cortical bone loss 4 weeks after VSG.


Asunto(s)
Hueso Esponjoso , Gastrectomía/efectos adversos , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina , Osteoporosis/genética , Animales , Densidad Ósea , Hueso Esponjoso/diagnóstico por imagen , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Ratones , Osteoporosis/patología , Microtomografía por Rayos X
4.
J Biol Chem ; 294(34): 12683-12694, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31266807

RESUMEN

Metabolic programming of bone marrow stromal cells (BMSCs) could influence the function of progenitor osteoblasts or adipocytes and hence determine skeletal phenotypes. Adipocytes predominantly utilize oxidative phosphorylation, whereas osteoblasts use glycolysis to meet ATP demand. Here, we compared progenitor differentiation from the marrow of two inbred mouse strains, C3H/HeJ (C3H) and C57BL6J (B6). These strains differ in both skeletal mass and bone marrow adiposity. We hypothesized that genetic regulation of metabolic programs controls skeletal stem cell fate. Our experiments identified Bcl-2-like protein 13 (Bcl2l13), a mitochondrial mitophagy receptor, as being critical for adipogenic differentiation. We also found that Bcl2l13 is differentially expressed in the two mouse strains, with C3H adipocyte progenitor differentiation being accompanied by a >2-fold increase in Bcl2l13 levels relative to B6 marrow adipocytes. Bcl2l13 expression also increased during adipogenic differentiation in mouse ear mesenchymal stem cells (eMSCs) and the murine preadipocyte cell line 3T3-L1. The higher Bcl2l13 expression correlated with increased mitochondrial fusion and biogenesis. Importantly, Bcl2l13 knockdown significantly impaired adipocyte differentiation in both 3T3-L1 cells and eMSCs. Mechanistically, Bcl2l13 knockdown reprogrammed cells to rely more on glycolysis to meet ATP demand in the face of impaired oxidative phosphorylation. Bcl2l13 knockdown in eMSCs increased mitophagy. Moreover, Bcl2l13 prevented apoptosis during adipogenesis. Our findings indicate that the mitochondrial receptor Bcl2l13 promotes adipogenesis by increasing oxidative phosphorylation, suppressing apoptosis, and providing mitochondrial quality control through mitophagy. We conclude that genetic programming of metabolism may be important for lineage determination and cell function within the bone marrow.


Asunto(s)
Adipogénesis/genética , Apoptosis , Mitocondrias/metabolismo , Mitofagia , Fosforilación Oxidativa , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL
5.
Pharmacol Res ; 152: 104589, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31874253

RESUMEN

Atypical antipsychotic (AA) medications including risperidone (RIS) and olanzapine (OLAN) are FDA approved for the treatment of psychiatric disorders including schizophrenia, bipolar disorder and depression. Clinical side effects of AA medications include obesity, insulin resistance, dyslipidemia, hypertension and increased cardiovascular disease risk. Despite the known pharmacology of these AA medications, the mechanisms contributing to adverse metabolic side-effects are not well understood. To evaluate drug-associated effects on the heart, we assessed changes in the cardiac proteomic signature in mice administered for 4 weeks with clinically relevant exposure of RIS or OLAN. Using proteomic and gene enrichment analysis, we identified differentially expressed (DE) proteins in both RIS- and OLAN-treated mouse hearts (p < 0.05), including proteins comprising mitochondrial respiratory complex I and pathways involved in mitochondrial function and oxidative phosphorylation. A subset of DE proteins identified were further validated by both western blotting and quantitative real-time PCR. Histological evaluation of hearts indicated that AA-associated aberrant cardiac gene expression occurs prior to the onset of gross pathomorphological changes. Additionally, RIS treatment altered cardiac mitochondrial oxygen consumption and whole body energy expenditure. Our study provides insight into the mechanisms underlying increased patient risk for adverse cardiac outcomes with chronic treatment of AA medications.


Asunto(s)
Antipsicóticos/farmacología , Miocardio/metabolismo , Risperidona/farmacología , Animales , Ácidos Grasos no Esterificados/sangre , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Factores de Riesgo de Enfermedad Cardiaca , Masculino , Ratones Endogámicos C57BL , Miocardio/patología , Olanzapina/farmacología , Consumo de Oxígeno , Proteómica
6.
J Cell Physiol ; 234(11): 20228-20239, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30953371

RESUMEN

Nocturnin (NOCT) belongs to the Mg2+ dependent Exonucleases, Endonucleases, Phosphatase (EEP) family of enzymes that exhibit various functions in vitro and in vivo. NOCT is known to function as a deadenylase, cleaving poly-A tails from mRNA (messenger RNA) transcripts. Previously, we reported a role for NOCT in regulating bone marrow stromal cell differentiation through its interactions with PPARγ. In this study, we characterized the skeletal and adipose tissue phenotype when we globally overexpressed Noct in vivo. After 12 weeks of Noct overexpression, transgenic male mice had lower fat mass compared to controls, with no significant differences in the skeleton. Based on the presence of a mitochondrial target sequence in NOCT, we determined that mouse NOCT protein localizes to the mitochondria; subsequently, we found that NOCT overexpression led to a significant increase in the preadipocytes ability to utilize oxidative phosphorylation for ATP (adenosine triphosphate) generation. In summary, the effects of NOCT on adipocytes are likely through its novel role as a mediator of mitochondrial function.


Asunto(s)
Adipogénesis/fisiología , Grasas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Adenosina Trifosfato/metabolismo , Tejido Adiposo/metabolismo , Animales , Diferenciación Celular/fisiología , Células HEK293 , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Modelos Animales , Fosforilación Oxidativa , PPAR gamma/metabolismo , ARN Mensajero/metabolismo
7.
Environ Microbiol ; 18(6): 1875-88, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26470632

RESUMEN

In hyperarid ecosystems, macroscopic communities are often restricted to cryptic niches, such as hypoliths (microbial communities found beneath translucent rocks), which are widely distributed in hyperarid desert environments. While hypolithic communities are considered to play a major role in productivity, the functional guilds implicated in these processes remain unclear. Here, we describe the metagenomic sequencing, assembly and analysis of hypolithic microbial communities from the Namib Desert. Taxonomic analyses using Small Subunit phylogenetic markers showed that bacterial phylotypes (93%) dominated the communities, with relatively small proportions of archaea (0.43%) and fungi (5.6%). Refseq-viral database analysis showed the presence of double stranded DNA viruses (7.8% contigs), dominated by Caudovirales (59.2%). Analysis of functional genes and metabolic pathways revealed that cyanobacteria were primarily responsible for photosynthesis with the presence of multiple copies of genes for both photosystems I and II, with a smaller but significant fraction of proteobacterial anoxic photosystem II genes. Hypolithons demonstrated an extensive genetic capacity for the degradation of phosphonates and mineralization of organic sulphur. Surprisingly, we were unable to show the presence of genes representative of complete nitrogen cycles. Taken together, our analyses suggest an extensive capacity for carbon, phosphate and sulphate cycling but only limited nitrogen biogeochemistry.


Asunto(s)
Archaea/aislamiento & purificación , Bacterias/genética , Hongos/aislamiento & purificación , Microbiología del Suelo , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Carbono/metabolismo , Clima Desértico , Ecosistema , Hongos/clasificación , Hongos/genética , Metagenómica , Filogenia , Suelo/química
8.
Bioorg Med Chem ; 23(13): 3408-13, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25963824

RESUMEN

Incorporation of nitrogen is a common medicinal chemistry tactic to reduce logD values. Neighboring group participation influences logD, so the results are isomer dependent. The logD and logP differences observed between isomeric pyrimidines 1, 2 and 3 presumably result when the carbonyl or ether lone pairs are in close proximity to a heterocyclic nitrogen lone pair, recruiting water to bridge between the electron rich atoms. Various lipophilicity calculators did not discriminate between 1 (logD=2.6) and 3 (logD=1.0), but solvation energies using Poisson-Boltzmann and 3D-RISM methods rationalize the observed differences in lipophilicity among pyrimidine carboxamide isomers.


Asunto(s)
Amidas/química , Electrones , Nitrógeno/química , Pirimidinas/química , Agua/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Isomerismo , Modelos Moleculares , Solubilidad , Termodinámica
9.
J Bone Miner Res ; 39(8): 1188-1199, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38995944

RESUMEN

Calorie restriction (CR) can lead to weight loss and decreased substrate availability for bone cells. Ultimately, this can lead to impaired peak bone acquisition in children and adolescence and bone loss in adults. But the mechanisms that drive diet-induced bone loss in humans are not well characterized. To explore those in greater detail, we examined the impact of 30% CR for 4 and 8 wk in both male and female 8-wk-old C57BL/6 J mice. Body composition, areal bone mineral density (aBMD), skeletal microarchitecture by micro-CT, histomorphometric parameters, and in vitro trajectories of osteoblast and adipocyte differentiation were examined. After 8 wk, CR mice lost weight and exhibited lower femoral and whole-body aBMD vs ad libitum (AL) mice. By micro-CT, CR mice had lower cortical bone area fraction vs AL mice, but males had preserved trabecular bone parameters and females showed increased bone volume fraction compared to AL mice. Histomorphometric analysis revealed that CR mice had a profound suppression in trabecular as well as endocortical and periosteal bone formation in addition to reduced bone resorption compared to AL mice. Bone marrow adipose tissue was significantly increased in CR mice. In vitro, the pace of adipogenesis in bone marrow stem cells was greatly accelerated with higher markers of adipocyte differentiation and more oil red O staining, whereas osteogenic differentiation was reduced. qRT-PCR and western blotting suggested that the expression of Wnt16 and the canonical ß-catenin pathway was compromised during CR. In sum, CR causes impaired peak cortical bone mass due to a profound suppression in bone remodeling. The increase in marrow adipocytes in vitro and in vivo is related to both progenitor recruitment and adipogenesis in the face of nutrient insufficiency. Long-term CR may lead to lower bone mass principally in the cortical envelope, possibly due to impaired Wnt signaling.


Calorie restriction led to impaired bone mass and increased accumulation of bone marrow adipose tissue. During the development of bone-fat imbalance due to calorie restriction, bone remodeling was notably inhibited. Calorie restriction may shift the differentiation of bone marrow stem cells toward adipocytes instead of osteoblasts. This process involves a disruption in the canonical Wnt signaling pathway.


Asunto(s)
Densidad Ósea , Remodelación Ósea , Restricción Calórica , Hueso Esponjoso , Hueso Cortical , Animales , Hueso Cortical/patología , Hueso Cortical/metabolismo , Hueso Cortical/diagnóstico por imagen , Femenino , Hueso Esponjoso/patología , Hueso Esponjoso/metabolismo , Hueso Esponjoso/diagnóstico por imagen , Masculino , Ratones Endogámicos C57BL , Ratones , Osteoblastos/metabolismo , Osteoblastos/patología , Adipogénesis , Adipocitos/metabolismo , Adipocitos/patología , Osteogénesis , Tamaño de los Órganos , Diferenciación Celular , Vía de Señalización Wnt , Microtomografía por Rayos X
10.
Eur J Obstet Gynecol Reprod Biol ; 294: 123-127, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237310

RESUMEN

OBJECTIVE: This study evaluated embryological and clinical outcomes in couples with severe male factor infertility versus those with normozoospermia undergoing ICSI and in vitro fertilisation. METHODS: This multicentre, retrospective cohort study included all couples who had undergone autologous ICSI cycles at My Duc Hospital and My Duc Phu Nhuan Hospital in Vietnam between January 2018 and January 2021 (female age < 35 years and males with severe male factor or normozoospermia based on the World Health Organization 2010 criteria). The primary outcome was the cumulative live birth rate after the first ICSI cycle. RESULTS: A total of 1296 couples were included, including 648 with severe male factor infertility and 648 with normozoospermia. The number of two pronuclei zygotes, embryos, and frozen embryos was significantly lower in couples with severe male factor infertility compared with normozoospermia (p < 0.05). In contrast, there were no significant differences between the two groups with respect to cumulative pregnancy outcomes, including the live birth rate, and secondary outcomes including clinical pregnancy rate, ongoing pregnancy rate, and miscarriage rate. CONCLUSION: Severe male factor infertility appeared to have an impact on the fertilisation and early developmental potential of embryos, but sperm quality did not affect cumulative clinical fertility outcomes.


Asunto(s)
Infertilidad Masculina , Infertilidad , Embarazo , Masculino , Humanos , Femenino , Adulto , Inyecciones de Esperma Intracitoplasmáticas/métodos , Estudios Retrospectivos , Semen , Infertilidad Masculina/terapia , Fertilización In Vitro/métodos , Índice de Embarazo , Tasa de Natalidad , Nacimiento Vivo
11.
Bioorg Med Chem Lett ; 23(9): 2787-92, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23506825

RESUMEN

PI3K, AKT and mTOR, key kinases from a frequently dysregulated PI3K signaling pathway, have been extensively pursued to treat a variety of cancers in oncology. Clinical trials of PF-04691502, a highly potent and selective ATP competitive kinase inhibitor of class 1 PI3Ks and mTOR, from 4-methylpyridopyrimidinone series, led to the discovery of a metabolite with a terminal carboxylic acid, PF-06465603. This paper discusses structure-based drug design, SAR and antitumor activity of the MPP derivatives with a terminal alcohol, a carboxylic acid or a carboxyl amide.


Asunto(s)
Antineoplásicos/química , Diseño de Fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/química , Pirimidinonas/química , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Antineoplásicos/síntesis química , Sitios de Unión , Línea Celular Tumoral , Cristalografía por Rayos X , Humanos , Ratones , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/síntesis química , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridonas/química , Pirimidinas/química , Pirimidinonas/síntesis química , Transducción de Señal , Relación Estructura-Actividad , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Environ Sci Pollut Res Int ; 30(1): 1898-1907, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35927402

RESUMEN

Phytoremediation is one of the most powerful and viable solutions for developing countries to clean the soil and water bodies from metallic pollutants. Cyperus alternifolius Linn. (CAL), a tropical wetland plant, has been widely researched for removing harmful contaminants due to its hyperaccumulation ability. However, the waste biomass of phytoremediation processing may risk secondary environmental pollution. Thus, the preparation and application of biochar from metal-contaminated plants can be considered a new approach. In a 60-day experiment, CAL plants were irrigated with different concentrations of Zn(II) (200, 700, 1200, 1700, and 2200 mg·L-1), and then the plants were converted into biochar via the pyrolysis process. The characteristics of biochar including of surface composition and morphology, phase formation, and optical property were analyzed. The biochar enriched with Zn(II) at 1200 mg·L-1 had a bandgap value of 3.17 eV and consisted of carbon microparticles intermingled with ZnO and SiO2 nanoparticles. Furthermore, the adsorption and photocatalysis of the biochar were studied in the discolouration of methylene blue (MB), as a test reaction, with the maximum MB removal capacities of 55.2 mg·g-1. Such results will serve as the basis for new research aiming at the potential for reusing metal-contaminated plants to produce efficient depolluting biochar.


Asunto(s)
Cyperus , Contaminantes del Suelo , Biodegradación Ambiental , Dióxido de Silicio , Carbón Orgánico , Plantas
13.
Elife ; 122023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37159501

RESUMEN

Conditional deletion of the PTH1R in mesenchymal progenitors reduces osteoblast differentiation, enhances marrow adipogenesis, and increases zinc finger protein 467 (Zfp467) expression. In contrast, genetic loss of Zfp467 increased Pth1r expression and shifts mesenchymal progenitor cell fate toward osteogenesis and higher bone mass. PTH1R and ZFP467 could constitute a feedback loop that facilitates PTH-induced osteogenesis and that conditional deletion of Zfp467 in osteogenic precursors would lead to high bone mass in mice. Prrx1Cre; Zfp467fl/fl but not AdipoqCre; Zfp467fl/fl mice exhibit high bone mass and greater osteogenic differentiation similar to the Zfp467-/- mice. qPCR results revealed that PTH suppressed Zfp467 expression primarily via the cyclic AMP/PKA pathway. Not surprisingly, PKA activation inhibited the expression of Zfp467 and gene silencing of Pth1r caused an increase in Zfp467 mRNA transcription. Dual fluorescence reporter assays and confocal immunofluorescence demonstrated that genetic deletion of Zfp467 resulted in higher nuclear translocation of NFκB1 that binds to the P2 promoter of the Pth1r and increased its transcription. As expected, Zfp467-/- cells had enhanced production of cyclic AMP and increased glycolysis in response to exogenous PTH. Additionally, the osteogenic response to PTH was also enhanced in Zfp467-/- COBs, and the pro-osteogenic effect of Zfp467 deletion was blocked by gene silencing of Pth1r or a PKA inhibitor. In conclusion, our findings suggest that loss or PTH1R-mediated repression of Zfp467 results in a pathway that increases Pth1r transcription via NFκB1 and thus cellular responsiveness to PTH/PTHrP, ultimately leading to enhanced bone formation.


Asunto(s)
Adipogénesis , Osteogénesis , Animales , Ratones , Diferenciación Celular , AMP Cíclico/metabolismo , Osteoblastos/metabolismo , Receptor de Hormona Paratiroídea Tipo 1/genética , Receptor de Hormona Paratiroídea Tipo 1/metabolismo
14.
Heliyon ; 9(5): e15946, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37229156

RESUMEN

Mesenchymal stem/stromal cells (MSCs) are multipotent stem cells that can be isolated from bone marrow, adipose tissue, the umbilical cord, dental pulp, etc. These cells have unique properties that give them excellent therapeutic potential, including immunoregulation, immunomodulation, and tissue regeneration functions. MSC-based products are considered advanced therapy medicinal products (ATMPs) under European regulations (1394/2007); thus, they must be manufactured under good manufacturing practices and via effective manufacturing methods. The former can be achieved via a proper laboratory design and compliance with manufacturing protocols, whereas the latter requires an approach that ensures that the quality of the products is consistent regardless of the manufacturing procedure. To meet these daunting requirements, this study proposes an exchangeable approach that combines optimized and equivalent manufacturing processes under the Quality by Design (QbD) principle, allowing investigators to convert from small laboratory-scale to large-scale manufacturing of MSC-based products for clinical applications without altering the quality and quantity of the cell-based products.

15.
Bioorg Med Chem Lett ; 22(15): 5098-103, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22749419
16.
Signal Transduct Target Ther ; 7(1): 272, 2022 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-35933430

RESUMEN

Recent advancements in stem cell technology open a new door for patients suffering from diseases and disorders that have yet to be treated. Stem cell-based therapy, including human pluripotent stem cells (hPSCs) and multipotent mesenchymal stem cells (MSCs), has recently emerged as a key player in regenerative medicine. hPSCs are defined as self-renewable cell types conferring the ability to differentiate into various cellular phenotypes of the human body, including three germ layers. MSCs are multipotent progenitor cells possessing self-renewal ability (limited in vitro) and differentiation potential into mesenchymal lineages, according to the International Society for Cell and Gene Therapy (ISCT). This review provides an update on recent clinical applications using either hPSCs or MSCs derived from bone marrow (BM), adipose tissue (AT), or the umbilical cord (UC) for the treatment of human diseases, including neurological disorders, pulmonary dysfunctions, metabolic/endocrine-related diseases, reproductive disorders, skin burns, and cardiovascular conditions. Moreover, we discuss our own clinical trial experiences on targeted therapies using MSCs in a clinical setting, and we propose and discuss the MSC tissue origin concept and how MSC origin may contribute to the role of MSCs in downstream applications, with the ultimate objective of facilitating translational research in regenerative medicine into clinical applications. The mechanisms discussed here support the proposed hypothesis that BM-MSCs are potentially good candidates for brain and spinal cord injury treatment, AT-MSCs are potentially good candidates for reproductive disorder treatment and skin regeneration, and UC-MSCs are potentially good candidates for pulmonary disease and acute respiratory distress syndrome treatment.


Asunto(s)
Células Madre Mesenquimatosas , Tejido Adiposo , Diferenciación Celular/genética , Humanos , Medicina Regenerativa , Cordón Umbilical
18.
Curr Microbiol ; 62(1): 101-10, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20514483

RESUMEN

Bacterial biosensor strains have greatly facilitated the rapid discovery, isolation, and study of quorum-sensing systems. In this study, we determined the relative sensitivity of a LasR-based E. coli bacterial bioluminescence biosensor JM109 (pSB1075) for 13 diverse long-chain N-acyl-homoserine lactones (AHLs) including oxygen-substituted and -unsubstituted AHLs containing 14, 16, and 18 carbons and with and without double bonds. Furthermore, we show by bioassay, HPLC, and GC/MS that four long-chain AHLs of the C16-HSL family are encoded by the avsI gene of Agrobacterium vitis strain F2/5, a non-tumorigenic strain that inhibits pathogenic strains of A. vitis from causing crown gall on grape. The four C16-HSLs include: C16-HSL, N-hexadecanoyl homoserine lactone; 3-oxo-C16-HSL, N-(3-oxohexadecanoyl)homoserine lactone; C16:1-HSL, N-(cis-9-octadecenoyl)homoserine lactone; and 3-oxo-C16:1-HSL, N-(3-oxo-cis-11-hexadecenoyl)homoserine lactone. Thus, the LasR-based bioluminescent biosensor tested in this study should serve as a useful tool for the detection of various long-chain AHLs with and without double bonds as well as those oxylated at the third carbon from uninvestigated species.


Asunto(s)
Acil-Butirolactonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Rhizobium/metabolismo , Técnicas Biosensibles , Cromatografía Líquida de Alta Presión , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Cromatografía de Gases y Espectrometría de Masas , Rhizobium/genética , Transactivadores/genética , Transactivadores/metabolismo
19.
Bone ; 144: 115832, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33359894

RESUMEN

Conditional deletion of the PTH receptor (Pth1r) in mesenchymal progenitors reduces osteoblast differentiation and bone mass while enhancing adipogenesis and bone marrow adipose tissue. Mechanistically, PTH suppresses the expression of Zfp467, a pro-adipogenic zinc finger transcription factor. Consequently, Pth1r deficiency in mesenchymal progenitors leads to increased Zfp467 expression. Based on these observations, we hypothesized that genetic loss of Zfp467 would lead to a shift in marrow progenitor cell fate towards osteogenesis and increased bone mass. To test this hypothesis, we generated Zfp467-/- mice. Zfp467-/- mice (-/-) were significantly smaller than Zfp467+/+ mice (+/+). µCT showed significantly higher trabecular bone and cortical bone area in -/- vs. +/+, and histomorphometry showed higher structural and dynamic formation parameters in -/- mice vs. +/+. Femoral gene expression including Alpl, Sp7, and Acp5 were increased in -/-mice, whereas Adiponectin, Cebpa, Lepr, and Ppraγ mRNA were lower in -/- mice. Similarly, Fabp4 and Lep in the inguinal depot were also decreased in -/- mice. Moreover, marrow adipocyte numbers were reduced in -/- vs +/+ mice (p<0.007). In vitro, COBs and BMSCs-/- showed more positive ALP and Alizarin Red staining and a decrease in ORO droplets. Pth1r mRNA and protein levels were increased in COBs and BMSCs from -/- mice vs +/+ (p<0.02 for each parameter, -/- vs. +/+). -/- cells also exhibited enhanced endogenous levels of cAMP vs. control cells. Moreover, in an ovariectomy (OVX) mouse model, Zfp467-/- mice had significantly lower fat mass but similar bone mass compared to OVX +/+ mice. In contrast, in a high fat diet (HFD) mouse model, in addition to reduced adipocyte volume and adipogenesis related gene expression in both peripheral and bone marrow fat tissue, greater osteoblast number and higher osteogenesis related gene expression were also observed in -/- HFD mice vs. +/+ HFD mice. Taken together, these results demonstrate that ZFP467 negatively influences skeletal homeostasis and favors adipogenesis. Global deletion of Zfp467 increases PTHR1, cAMP and bone turnover, hence its repression is a component of PTH signaling and its regulation. These data support a critical role for Zfp467 in early lineage allocation and provide a novel potential mechanism by which PTH acts in an anabolic manner on the bone remodeling unit.


Asunto(s)
Adipogénesis , Osteogénesis , Adipocitos , Adipogénesis/genética , Animales , Médula Ósea , Células de la Médula Ósea , Hueso Esponjoso , Diferenciación Celular , Femenino , Ratones , Osteoblastos , Osteogénesis/genética
20.
Front Immunol ; 12: 738958, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721405

RESUMEN

Immune checkpoint blockade (ICB) relieves CD8+ T-cell exhaustion in most mutated tumors, and TCF-1 is implicated in converting progenitor exhausted cells to functional effector cells. However, identifying mechanisms that can prevent functional senescence and potentiate CD8+ T-cell persistence for ICB non-responsive and resistant tumors remains elusive. We demonstrate that targeting Cbx3/HP1γ in CD8+ T cells augments transcription initiation and chromatin remodeling leading to increased transcriptional activity at Lef1 and Il21r. LEF-1 and IL-21R are necessary for Cbx3/HP1γ-deficient CD8+ effector T cells to persist and control ovarian cancer, melanoma, and neuroblastoma in preclinical models. The enhanced persistence of Cbx3/HP1γ-deficient CD8+ T cells facilitates remodeling of the tumor chemokine/receptor landscape ensuring their optimal invasion at the expense of CD4+ Tregs. Thus, CD8+ T cells heightened effector function consequent to Cbx3/HP1γ deficiency may be distinct from functional reactivation by ICB, implicating Cbx3/HP1γ as a viable cancer T-cell-based therapy target for ICB resistant, non-responsive solid tumors.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Homólogo de la Proteína Chromobox 5/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Linfocitos Infiltrantes de Tumor/metabolismo , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Melanoma Experimental/metabolismo , Neuroblastoma/metabolismo , Neoplasias Ováricas/metabolismo , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/trasplante , Diferenciación Celular , Línea Celular Tumoral , Homólogo de la Proteína Chromobox 5/genética , Proteínas Cromosómicas no Histona/genética , Técnicas de Cocultivo , Femenino , Regulación Neoplásica de la Expresión Génica , Inmunoterapia Adoptiva , Subunidad alfa del Receptor de Interleucina-21/genética , Subunidad alfa del Receptor de Interleucina-21/metabolismo , Activación de Linfocitos , Linfocitos Infiltrantes de Tumor/inmunología , Factor de Unión 1 al Potenciador Linfoide/genética , Melanoma Experimental/genética , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuroblastoma/genética , Neuroblastoma/inmunología , Neuroblastoma/terapia , Neoplasias Ováricas/genética , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/terapia , Transducción de Señal , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Carga Tumoral , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA