RESUMEN
BACKGROUND: Children are susceptible to severe or fatal enterovirus 71 (EV71) infections. We aimed to evaluate the efficacy, safety, and immunogenicity of EV71vac, an aluminium phosphate-adjuvanted inactivated EV71 vaccine in children aged 2-71 months. METHODS: We did a randomised, double-blinded, placebo-controlled, phase 3 trial at five hospitals in Taiwan and two in Vietnam. Children aged 2-71 months were stratified by country and age, and randomly assigned (1:1) to receive two doses of EV71vac or placebo via intramuscular injection 56 days apart. Children aged 2-23 months received a third booster dose on day 366. The primary endpoint was the clinical efficacy of the total vaccinated cohort against EV71-associated diseases during the follow-up period, from 14 days after the second dose to when 15 cases of EV71 infections were confirmed in the per-protocol population. Our safety analysis included all participants who received at least one dose of EV71vac. This trial is registered with ClinicalTrials.gov, NCT03865238, and is complete. FINDINGS: Between April 23 and Dec 25, 2019, of 3663 children assessed, 3061 were randomly assigned, of whom 3049 were vaccinated: 1521 children in the EV71vac group and 1528 in the placebo group. By May 20, 2021, our primary efficacy analysis included 2959 children, with 1476 children in the EV71vac group and 1483 children in the placebo group. The vaccine efficacy of EV71vac was 96·8% (95% CI 85·5-100) against EV71 associated diseases (p<0·0001). The percentage of participants who reported solicited adverse events were similar in both groups: 865 (56·9%) in the EV71vac group and 852 (55·8%) in the placebo group. Almost all reported solicited adverse events were mild and self-limited. INTERPRETATION: EV71vac is safe, well-tolerated, and highly effective in preventing EV71 associated diseases in children aged 2-71 months. FUNDING: Medigen Vaccine Biologics and A+ Industrial Innovative R&D Program of the Ministry of Economic Affairs, Taiwan.
Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Adyuvantes Inmunológicos , Anticuerpos Antivirales , Niño , Método Doble Ciego , Infecciones por Enterovirus/prevención & control , Humanos , Lactante , Vacunas de Productos Inactivados/efectos adversosRESUMEN
Biogenic gold nanoparticles (AuNPs) have been extensively studied for the catalytic conversion of nitrophenols (NP) into aminophenols and the colorimetric quantification of heavy metal ions in aqueous solutions. However, the high self-agglomeration ability of colloidal nanoparticles is one of the major obstacles hindering their application. In the present study, we offered novel biogenic AuNPs synthesized by a green approach using Cistanche deserticola (CD) extract as a bioreducing agent and stabilized on poly(styrene-co-maleic anhydride) (PSMA). The prepared Au@PSMA nanoparticles were characterized by various techniques (HR-TEM, SEAD, FE-SEM, DLS, TGA, XRD, and FTIR) and studied for two applications: the catalytic reduction of 3-NP by NaBH4 and the sensing detection of Pb2+ ions. The optimal conditions for the synthesis of AuNPs were investigated and established at 60 °C, 20 min, pH of 9, and 0.5 mM Au3+. Morphological studies showed that AuNPs synthesized by CD extract were mostly spherical with a mean diameter of 25 nm, while the size of polymer-integrated AuNPs was more than two-fold larger. Since PSMA acted as a matrix keeping the nanoparticles from coagulation and maintaining the optimal surface area, AuNPs integrated with PSMA showed higher catalytic efficiency with a faster reaction rate and lower activation energy than conventional nanoparticles. Au@PSMA could completely reduce 3-NP within 10 min with a rate constant of 0.127 min-1 and activation energy of 9.96 kJ/mol. The presence of PSMA also improved the stability and recyclability of AuNPs. Used as a sensor, Au@PSMA exhibited excellent sensitivity and selectivity for Pb2+ ions with a limit of detection of 0.03 µM in the linear range of 0-100 µM. The study results suggested that Au@PSMA could be used as a promising catalyst for the reduction of NP and the colorimetric sensor for detection of Pb2+ ions in aqueous environmental samples.