Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Brain ; 141(2): 365-376, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29253101

RESUMEN

Chronic pain is a major global public health issue causing a severe impact on both the quality of life for sufferers and the wider economy. Despite the significant clinical burden, little progress has been made in terms of therapeutic development. A unique approach to identifying new human-validated analgesic drug targets is to study rare families with inherited pain insensitivity. Here we have analysed an otherwise normal family where six affected individuals display a pain insensitive phenotype that is characterized by hyposensitivity to noxious heat and painless bone fractures. This autosomal dominant disorder is found in three generations and is not associated with a peripheral neuropathy. A novel point mutation in ZFHX2, encoding a putative transcription factor expressed in small diameter sensory neurons, was identified by whole exome sequencing that segregates with the pain insensitivity. The mutation is predicted to change an evolutionarily highly conserved arginine residue 1913 to a lysine within a homeodomain. Bacterial artificial chromosome (BAC) transgenic mice bearing the orthologous murine p.R1907K mutation, as well as Zfhx2 null mutant mice, have significant deficits in pain sensitivity. Gene expression analyses in dorsal root ganglia from mutant and wild-type mice show altered expression of genes implicated in peripheral pain mechanisms. The ZFHX2 variant and downstream regulated genes associated with a human pain-insensitive phenotype are therefore potential novel targets for the development of new analgesic drugs.awx326media15680039660001.


Asunto(s)
Insensibilidad Congénita al Dolor/genética , Umbral del Dolor/fisiología , Dolor/fisiopatología , Mutación Puntual/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Adolescente , Adulto , Anciano , Animales , Calcio/metabolismo , Capsaicina/efectos adversos , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/patología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Hiperalgesia/patología , Hiperalgesia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Dolor/inducido químicamente , Insensibilidad Congénita al Dolor/patología , Insensibilidad Congénita al Dolor/fisiopatología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Piel/patología , Adulto Joven
2.
Channels (Austin) ; 15(1): 208-228, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33487118

RESUMEN

Mutations in the voltage-gated sodium channel Nav1.7 are linked to human pain. The Nav1.7/N1245S variant was described before in several patients suffering from primary erythromelalgia and/or olfactory hypersensitivity. We have identified this variant in a pain patient and a patient suffering from severe and life-threatening orthostatic hypotension. In addition, we report a female patient suffering from muscle pain and carrying the Nav1.7/E1139K variant. We tested both Nav1.7 variants by whole-cell voltage-clamp recordings in HEK293 cells, revealing a slightly enhanced current density for the N1245S variant when co-expressed with the ß1 subunit. This effect was counteracted by an enhanced slow inactivation. Both variants showed similar voltage dependence of activation and steady-state fast inactivation, as well as kinetics of fast inactivation, deactivation, and use-dependency compared to WT Nav1.7. Finally, homology modeling revealed that the N1245S substitution results in different intramolecular interaction partners. Taken together, these experiments do not point to a clear pathogenic effect of either the N1245S or E1139K variant and suggest they may not be solely responsible for the patients' pain symptoms. As discussed previously for other variants, investigations in heterologous expression systems may not sufficiently mimic the pathophysiological situation in pain patients, and single nucleotide variants in other genes or modulatory proteins are necessary for these specific variants to show their effect. Our findings stress that biophysical investigations of ion channel mutations need to be evaluated with care and should preferably be supplemented with studies investigating the mutations in their context, ideally in human sensory neurons.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7 , Eritromelalgia , Células HEK293 , Humanos , Potenciales de la Membrana , Técnicas de Placa-Clamp
3.
Sci Rep ; 11(1): 6934, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767215

RESUMEN

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expanded polyglutamine repeat in the huntingtin gene. The neuropathology of HD is characterized by the decline of a specific neuronal population within the brain, the striatal medium spiny neurons (MSNs). The origins of this extreme vulnerability remain unknown. Human induced pluripotent stem cell (hiPS cell)-derived MSNs represent a powerful tool to study this genetic disease. However, the differentiation protocols published so far show a high heterogeneity of neuronal populations in vitro. Here, we compared two previously published protocols to obtain hiPS cell-derived striatal neurons from both healthy donors and HD patients. Patch-clamp experiments, immunostaining and RT-qPCR were performed to characterize the neurons in culture. While the neurons were mature enough to fire action potentials, a majority failed to express markers typical for MSNs. Voltage-clamp experiments on voltage-gated sodium (Nav) channels revealed a large variability between the two differentiation protocols. Action potential analysis did not reveal changes induced by the HD mutation. This study attempts to demonstrate the current challenges in reproducing data of previously published differentiation protocols and in generating hiPS cell-derived striatal MSNs to model a genetic neurodegenerative disorder in vitro.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular , Enfermedad de Huntington , Neuronas/fisiología , Potenciales de Acción , Animales , Calcio/metabolismo , Estudios de Casos y Controles , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas , Ratones Endogámicos C57BL , Subunidad beta-4 de Canal de Sodio Activado por Voltaje/metabolismo , Ácido gamma-Aminobutírico/metabolismo
4.
Pain ; 160(6): 1327-1341, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30720580

RESUMEN

The chronic pain syndrome inherited erythromelalgia (IEM) is attributed to mutations in the voltage-gated sodium channel (NaV) 1.7. Still, recent studies targeting NaV1.7 in clinical trials have provided conflicting results. Here, we differentiated induced pluripotent stem cells from IEM patients with the NaV1.7/I848T mutation into sensory nociceptors. Action potentials in these IEM nociceptors displayed a decreased firing threshold, an enhanced upstroke, and afterhyperpolarization, all of which may explain the increased pain experienced by patients. Subsequently, we investigated the voltage dependence of the tetrodotoxin-sensitive NaV activation in these human sensory neurons using a specific prepulse voltage protocol. The IEM mutation induced a hyperpolarizing shift of NaV activation, which leads to activation of NaV1.7 at more negative potentials. Our results indicate that NaV1.7 is not active during subthreshold depolarizations, but that its activity defines the action potential threshold and contributes significantly to the action potential upstroke. Thus, our model system with induced pluripotent stem cell-derived sensory neurons provides a new rationale for NaV1.7 function and promises to be valuable as a translational tool to profile and develop more efficacious clinical analgesics.


Asunto(s)
Eritromelalgia/fisiopatología , Células Madre Pluripotentes Inducidas/citología , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Células Receptoras Sensoriales/metabolismo , Potenciales de Acción/efectos de los fármacos , Estimulación Eléctrica/métodos , Eritromelalgia/genética , Ganglios Espinales/citología , Humanos , Potenciales de la Membrana/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.7/genética , Nociceptores/fisiología , Dolor/diagnóstico , Dolor/genética , Técnicas de Placa-Clamp/métodos , Tetrodotoxina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA