Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 41(12): e108306, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35506364

RESUMEN

Influenza virus infection causes considerable morbidity and mortality, but current therapies have limited efficacy. We hypothesized that investigating the metabolic signaling during infection may help to design innovative antiviral approaches. Using bronchoalveolar lavages of infected mice, we here demonstrate that influenza virus induces a major reprogramming of lung metabolism. We focused on mitochondria-derived succinate that accumulated both in the respiratory fluids of virus-challenged mice and of patients with influenza pneumonia. Notably, succinate displays a potent antiviral activity in vitro as it inhibits the multiplication of influenza A/H1N1 and A/H3N2 strains and strongly decreases virus-triggered metabolic perturbations and inflammatory responses. Moreover, mice receiving succinate intranasally showed reduced viral loads in lungs and increased survival compared to control animals. The antiviral mechanism involves a succinate-dependent posttranslational modification, that is, succinylation, of the viral nucleoprotein at the highly conserved K87 residue. Succinylation of viral nucleoprotein altered its electrostatic interactions with viral RNA and further impaired the trafficking of viral ribonucleoprotein complexes. The finding that succinate efficiently disrupts the influenza replication cycle opens up new avenues for improved treatment of influenza pneumonia.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Neumonía , Animales , Antivirales/farmacología , Humanos , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Ratones , Proteínas de la Nucleocápside , Nucleoproteínas/metabolismo , Ácido Succínico/metabolismo , Ácido Succínico/farmacología , Ácido Succínico/uso terapéutico , Replicación Viral
2.
Nat Methods ; 17(9): 901-904, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32807955

RESUMEN

We present ReDU ( https://redu.ucsd.edu/ ), a system for metadata capture of public mass spectrometry-based metabolomics data, with validated controlled vocabularies. Systematic capture of knowledge enables the reanalysis of public data and/or co-analysis of one's own data. ReDU enables multiple types of analyses, including finding chemicals and associated metadata, comparing the shared and different chemicals between groups of samples, and metadata-filtered, repository-scale molecular networking.


Asunto(s)
Bases de Datos de Compuestos Químicos , Espectrometría de Masas , Metabolómica/métodos , Programas Informáticos , Metadatos , Modelos Químicos
3.
Nat Methods ; 17(9): 905-908, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32839597

RESUMEN

Molecular networking has become a key method to visualize and annotate the chemical space in non-targeted mass spectrometry data. We present feature-based molecular networking (FBMN) as an analysis method in the Global Natural Products Social Molecular Networking (GNPS) infrastructure that builds on chromatographic feature detection and alignment tools. FBMN enables quantitative analysis and resolution of isomers, including from ion mobility spectrometry.


Asunto(s)
Productos Biológicos/química , Espectrometría de Masas , Biología Computacional/métodos , Bases de Datos Factuales , Metabolómica/métodos , Programas Informáticos
4.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37834405

RESUMEN

Thioesters of coenzyme A (CoA) carrying different acyl chains (acyl-CoAs) are central intermediates of many metabolic pathways and donor molecules for protein lysine acylation. Acyl-CoA species largely differ in terms of cellular concentrations and physico-chemical properties, rendering their analysis challenging. Here, we compare several approaches to quantify cellular acyl-CoA concentrations in normal and ischemic rat liver, using HPLC and LC-MS/MS for multi-acyl-CoA analysis, as well as NMR, fluorimetric and spectrophotometric techniques for the quantification of acetyl-CoAs. In particular, we describe a simple LC-MS/MS protocol that is suitable for the relative quantification of short and medium-chain acyl-CoA species. We show that ischemia induces specific changes in the short-chain acyl-CoA relative concentrations, while mild ischemia (1-2 min), although reducing succinyl-CoA, has little effects on acetyl-CoA, and even increases some acyl-CoA species upstream of the tricarboxylic acid cycle. In contrast, advanced ischemia (5-6 min) also reduces acetyl-CoA levels. Our approach provides the keys to accessing the acyl-CoA metabolome for a more in-depth analysis of metabolism, protein acylation and epigenetics.


Asunto(s)
Acilcoenzima A , Espectrometría de Masas en Tándem , Ratas , Animales , Acetilcoenzima A/análisis , Cromatografía Liquida/métodos , Acilcoenzima A/metabolismo , Coenzima A/análisis , Isquemia , Hígado/metabolismo
5.
Chembiochem ; 18(17): 1730-1734, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28632300

RESUMEN

A conjugatable form of the tumour-associated carbohydrate antigen sialyl-Tn (Neu5Ac-α-2,6-GalNAc) was efficiently produced in Escherichia coli. Metabolically engineered E. coli strains overexpressing the 6-sialyltransferase gene of Photobacterium sp. and CMP-Neu5Ac synthetase genes of Neisseria meningitidis were cultivated at high density in the presence of GalNAc-α-propargyl as the exogenous acceptor. The target disaccharides, which were produced on the scale of several hundreds of milligrams, were then conjugated by using copper(I)-catalysed azide-alkyne cycloaddition click chemistry to a fully synthetic and immunogenic scaffold with the aim to create a candidate anticancer vaccine. Four sialyl-Tn epitopes were introduced on the upper face of an azido-functionalised multivalent cyclopeptide scaffold, the lower face of which was previously modified by an immunogenic polypeptide, PADRE. The ability of the resulting glycoconjugate to interact with oncofoetal sialyl-Tn monoclonal antibodies was confirmed in ELISA assays.


Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores/metabolismo , Escherichia coli/metabolismo , Vacunas Sintéticas/metabolismo , Secuencia de Aminoácidos , Anticuerpos Monoclonales/inmunología , Reacciones Antígeno-Anticuerpo , Antígenos de Carbohidratos Asociados a Tumores/química , Antígenos de Carbohidratos Asociados a Tumores/genética , Antígenos de Carbohidratos Asociados a Tumores/inmunología , Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/metabolismo , Cromatografía en Capa Delgada , Química Clic , Ensayo de Inmunoadsorción Enzimática , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Epítopos/metabolismo , Ingeniería Metabólica , Neisseria/enzimología , Péptidos Cíclicos/genética , Péptidos Cíclicos/inmunología , Péptidos Cíclicos/metabolismo , Photobacterium/enzimología , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
6.
BMC Microbiol ; 16(1): 137, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27392067

RESUMEN

BACKGROUND: Pseudomonas aeruginosa (Pa) is a Gram-negative bacteria frequently involved in healthcare-associated pneumonia with poor clinical outcome. To face the announced post-antibiotic era due to increasing resistance and lack of new antibiotics, new treatment strategies have to be developed. Immunomodulation of the host response involved in outcome could be an alternative therapeutic target in Pa-induced lung infection. Kynurenines are metabolites resulting from tryptophan catabolism and are known for their immunomodulatory properties. Pa catabolizes tryptophan through the kynurenine pathway. Interestingly, many host cells also possess the kynurenine pathway, whose metabolites are known to control immune system homeostasis. Thus, bacterial metabolites may interfere with the host's immune response. However, the kynurenine pathway in Pa, including functional enzymes, types and amounts of secreted metabolites remains poorly known. Using liquid chromatography coupled to mass spectrometry and different strains of Pa, we determined types and levels of metabolites produced by Pa ex vivo in growth medium, and the relevance of this production in vivo in a murine model of acute lung injury. RESULTS: Ex vivo, Pa secretes clinically relevant kynurenine levels (µM to mM). Pa also secretes kynurenic acid and 3-OH-kynurenine, suggesting that the bacteria possess both a functional kynurenine aminotransferase and kynurenine monooxygenase. The bacterial kynurenine pathway is the major pathway leading to anthranilate production both ex vivo and in vivo. In the absence of the anthranilate pathway, the kynurenine pathway leads to kynurenic acid production. CONCLUSION: Pa produces and secretes several metabolites of the kynurenine pathway. Here, we demonstrate the existence of new metabolic pathways leading to synthesis of bioactive molecules, kynurenic acid and 3-OH-kynurenine in Pa. The kynurenine pathway in Pa is critical to produce anthranilate, a crucial precursor of some Pa virulence factors. Metabolites (anthranilate, kynurenine, kynurenic acid) are produced at sustained levels both ex vivo and in vivo leading to a possible immunomodulatory interplay between bacteria and host. These data may imply that pulmonary infection with bacteria highly expressing the kynurenine pathway enzymes could influence the equilibrium of the host's tryptophan metabolic pathway, known to be involved in the immune response to infection. Further studies are needed to explore the effects of these metabolic changes on the pathophysiology of Pa infection.


Asunto(s)
Pseudomonas aeruginosa/metabolismo , Triptófano/metabolismo , Lesión Pulmonar Aguda/microbiología , Animales , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Inmunidad Innata , Ácido Quinurénico/metabolismo , Quinurenina/metabolismo , Redes y Vías Metabólicas , Ratones , Murinae , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/enzimología , Transaminasas/metabolismo , ortoaminobenzoatos/metabolismo
7.
Mol Ther ; 21(5): 1076-86, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23531551

RESUMEN

The industrial development of active immunotherapy based on live-attenuated bacterial vectors has matured. We developed a microsyringe for antigen delivery based on the type III secretion system (T3SS) of P. aeruginosa. We applied the "killed but metabolically active" (KBMA) attenuation strategy to make this bacterial vector suitable for human use. We demonstrate that attenuated P. aeruginosa has the potential to deliver antigens to human antigen-presenting cells in vitro via T3SS with considerable attenuated cytotoxicity as compared with the wild-type vector. In a mouse model of cancer, we demonstrate that this KBMA strain, which cannot replicate in its host, efficiently disseminates into lymphoid organs and delivers its heterologous antigen. The attenuated strain effectively induces a cellular immune response to the cancerous cells while lowering the systemic inflammatory response. Hence, a KBMA P. aeruginosa microsyringe is an efficient and safe tool for in vivo antigen delivery.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos/inmunología , Inmunoterapia , Pseudomonas aeruginosa/inmunología , Animales , Sistemas de Secreción Bacterianos , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/toxicidad , Línea Celular Tumoral , Células Dendríticas/inmunología , Células Dendríticas/microbiología , Modelos Animales de Enfermedad , Epítopos de Linfocito T/inmunología , Femenino , Furocumarinas/farmacología , Humanos , Inmunidad Celular , Tejido Linfoide/inmunología , Tejido Linfoide/microbiología , Ratones , Mutación , Neoplasias/inmunología , Neoplasias/prevención & control , Neoplasias/terapia , Fármacos Fotosensibilizantes/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/toxicidad , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Mol Metab ; 81: 101903, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38369012

RESUMEN

Acetyl and other acyl groups from different short-chain fatty acids (SCFA) competitively modify histones at various lysine sites. To fully understand the functional significance of such histone acylation, a key epigenetic mechanism, it is crucial to characterize the cellular sources of the corresponding acyl-CoA molecules required for the lysine modification. Like acetate, SCFAs such as propionate, butyrate and crotonate are thought to be the substrates used to generate the corresponding acyl-CoAs by enzymes known as acyl-CoA synthetases. The acetyl-CoA synthetase, ACSS2, which produces acetyl-CoA from acetate in the nucleocytoplasmic compartment, has been proposed to also mediate the synthesis of acyl-CoAs such as butyryl- and crotonyl-CoA from the corresponding SCFAs. This idea is now widely accepted and is sparking new research projects. However, based on our direct in vitro experiments with purified or recombinant enzymes and structural considerations, we demonstrate that ACSS2 is unable to mediate the generation of non-acetyl acyl-CoAs like butyryl- and crotonyl-CoA. It is therefore essential to re-examine published data and corresponding discussions in the light of this new finding.


Asunto(s)
Acilcoenzima A , Lisina , Acetilcoenzima A , Acilcoenzima A/metabolismo , Acetatos , Histonas
9.
Methods Protoc ; 7(1)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38392689

RESUMEN

The connection between imbalances in the human gut microbiota, known as dysbiosis, and various diseases has been well established. Current techniques for sampling the small intestine are both invasive for patients and costly for healthcare facilities. Most studies on human gut microbiome are conducted using faecal samples, which do not accurately represent the microbiome in the upper intestinal tract. A pilot clinical investigation, registered as NCT05477069 and sponsored by the Grenoble Alpes University Hospital, is currently underway to evaluate a novel ingestible medical device (MD) designed for collecting small intestinal liquids by Pelican Health. This study is interventional and monocentric, involving 15 healthy volunteers. The primary objective of the study is to establish the safety and the performance of the MD when used on healthy volunteers. Secondary objectives include assessing the device's performance and demonstrating the difference between the retrieved sample from the MD and the corresponding faecal sample. Multi-omics analysis will be performed, including metagenomics, metabolomics, and culturomics. We anticipate that the MD will prove to be safe without any reported adverse effects, and we collected samples suitable for the proposed omics analyses in order to demonstrate the functionality of the MD and the clinical potential of the intestinal content.

10.
Nutrients ; 15(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37447363

RESUMEN

Pseudomonas aeruginosa (P. aeruginosa) causes harmful lung infections, especially in immunocompromised patients. The immune system and Interleukin (IL)-17-producing γδ T cells (γδ T) are critical in controlling these infections in mice. The gut microbiota modulates host immunity in both cancer and infection contexts. Nutritional intervention is a powerful means of modulating both microbiota composition and functions, and subsequently the host's immune status. We have recently shown that inulin prebiotic supplementation triggers systemic γδ T activation in a cancer context. We hypothesized that prophylactic supplementation with inulin might protect mice from lethal P. aeruginosa acute lung infection in a γδ T-dependent manner. C57Bl/6 mice were supplemented with inulin for 15 days before the lethal P. aeruginosa lung infection, administered intranasally. We demonstrate that prophylactic inulin supplementation triggers a higher proportion of γδ T in the blood, accompanied by a higher infiltration of IL-17-producing γδ T within the lungs, and protects 33% of infected mice from death. This observation relies on γδ T, as in vivo γδ TcR blocking using a monoclonal antibody completely abrogates inulin-mediated protection. Overall, our data indicate that inulin supplementation triggers systemic γδ T activation, and could help resolve lung P. aeruginosa infections. Moreover, our data suggest that nutritional intervention might be a powerful way to prevent/reduce infection-related mortality, by reinforcing the microbiota-dependent immune system.


Asunto(s)
Inulina , Pseudomonas aeruginosa , Animales , Ratones , Inulina/farmacología , Prebióticos , Pulmón , Linfocitos T , Ratones Endogámicos C57BL
11.
Front Cell Infect Microbiol ; 12: 909731, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35880080

RESUMEN

The spread of antibiotic-resistant bacteria poses a substantial threat to morbidity and mortality worldwide. Carbapenem-resistant Pseudomonas aeruginosa (CRPA) are considered "critical-priority" bacteria by the World Health Organization (WHO) since 2017 taking into account criteria such as patient mortality, global burden disease, and worldwide trend of multi-drug resistance (MDR). Indeed P. aeruginosa can be particularly difficult to eliminate from patients due to its combinatory antibiotic resistance, multifactorial virulence, and ability to over-adapt in a dynamic way. Research is active, but the course to a validated efficacy of a new treatment is still long and uncertain. What is new in the anti-P. aeruginosa clinical development pipeline since the 2017 WHO alert? This review focuses on new solutions for P. aeruginosa infections that are in active clinical development, i.e., currently being tested in humans and may be approved for patients in the coming years. Among 18 drugs of interest in December 2021 anti-P. aeruginosa development pipeline described here, only one new combination of ß-lactam/ß-lactamase inhibitor is in phase III trial. Derivatives of existing antibiotics considered as "traditional agents" are over-represented. Diverse "non-traditional agents" including bacteriophages, iron mimetic/chelator, and anti-virulence factors are significantly represented but unfortunately still in early clinical stages. Despite decade of efforts, there is no vaccine currently in clinical development to prevent P. aeruginosa infections. Studying pipeline anti-P. aeruginosa since 2017 up to now shows how to provide a new treatment for patients can be a difficult task. Given the process duration, the clinical pipeline remains unsatisfactory leading best case to the approval of new antibacterial drugs that treat CRPA in several years. Beyond investment needed to build a robust pipeline, the Community needs to reinvent medicine with new strategies of development to avoid the disaster. Among "non-traditional agents", anti-virulence strategy may have the potential through novel and non-killing modes of action to reduce the selective pressure responsible of MDR.


Asunto(s)
Infecciones por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/microbiología , Factores de Virulencia , Organización Mundial de la Salud
12.
Metabolites ; 12(11)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36355144

RESUMEN

Microbiota-derived metabolites have biological importance for their host. Spermidine, a metabolite described for its protective effect in age-related diseases, is now studied for its role in the resolution of inflammation and gut homeostasis. Strategies to modulate its production in the gastrointestinal tract are of interest to increase host spermidine intakes. Here, we show that metabolic engineering can be used to increase spermidine production by the probiotic Escherichia coli Nissle 1917 (EcN), used in humans. First, we found that increasing the expression of genes involved in polyamine biosynthesis, namely the S-adenosylmethionine synthase speD and the spermidine synthase speE, resulted in an increase in spermidine produced and excreted by our engineered bacteria. The major drawback of this first attempt was the production of acetylated forms of spermidine. Next, we propose to solve this problem by increasing the expression of the spermidine exporter system MdtI/MdtJ. This second strategy had a major impact on the spermidine profile found in the culture supernatant. Our results demonstrate, for the first time, the feasibility of rationally engineering bacterial probiotic strains to increase their ability to deliver the microbiota-derived metabolite, spermidine. This work illustrates how metabolomic and synthetic biology can be used to design and improve engineered Live Biotherapeutic Products that have the potential to be used in personalized medicine.

13.
Front Immunol ; 13: 889813, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911748

RESUMEN

COVID-19 is caused by the human pathogen severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has resulted in widespread morbidity and mortality. CD4+ T cells, CD8+ T cells and neutralizing antibodies all contribute to control SARS-CoV-2 infection. However, heterogeneity is a major factor in disease severity and in immune innate and adaptive responses to SARS-CoV-2. We performed a deep analysis by flow cytometry of lymphocyte populations of 125 hospitalized SARS-CoV-2 infected patients on the day of hospital admission. Five clusters of patients were identified using hierarchical classification on the basis of their immunophenotypic profile, with different mortality outcomes. Some characteristics were observed in all the clusters of patients, such as lymphopenia and an elevated level of effector CD8+CCR7- T cells. However, low levels of T cell activation are associated to a better disease outcome; on the other hand, profound CD8+ T-cell lymphopenia, a high level of CD4+ and CD8+ T-cell activation and a high level of CD8+ T-cell senescence are associated with a higher mortality outcome. Furthermore, a cluster of patient was characterized by high B-cell responses with an extremely high level of plasmablasts. Our study points out the prognostic value of lymphocyte parameters such as T-cell activation and senescence and strengthen the interest in treating the patients early in course of the disease with targeted immunomodulatory therapies based on the type of adaptive response of each patient.


Asunto(s)
COVID-19 , Subgrupos Linfocitarios , Linfopenia , Linfocitos B , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , COVID-19/diagnóstico , COVID-19/inmunología , COVID-19/mortalidad , Humanos , Activación de Linfocitos , Linfopenia/virología , SARS-CoV-2
14.
Metabolites ; 11(6)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205653

RESUMEN

Trillions of microorganisms, termed the "microbiota", reside in the mammalian gastrointestinal tract, and collectively participate in regulating the host phenotype. It is now clear that the gut microbiota, metabolites, and intestinal immune function are correlated, and that alterations of the complex and dynamic host-microbiota interactions can have deep consequences for host health. However, the mechanisms by which the immune system regulates the microbiota and by which the microbiota shapes host immunity are still not fully understood. This article discusses the contribution of metabolites in the crosstalk between gut microbiota and immune cells. The identification of key metabolites having a causal effect on immune responses and of the mechanisms involved can contribute to a deeper insight into host-microorganism relationships. This will allow a better understanding of the correlation between dysbiosis, microbial-based dysmetabolism, and pathogenesis, thus creating opportunities to develop microbiota-based therapeutics to improve human health. In particular, we systematically review the role of soluble and membrane-bound microbial metabolites in modulating host immunity in the gut, and of immune cells-derived metabolites affecting the microbiota, while discussing evidence of the bidirectional impact of this crosstalk. Furthermore, we discuss the potential strategies to hear the sound of such metabolite-mediated crosstalk.

15.
Respir Med Res ; 80: 100845, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34242975

RESUMEN

BACKGROUND: Immune checkpoints inhibitors (ICI) are becoming new standards of care for the treatment of non-small cell lung cancer (NSCLC), both as first (alone or in association with chemotherapy) and second line. However, no powerful predictive biomarker of therapeutic response to ICI has been found to date. It has been recently shown that microbiota composition could influence the ability of patients to respond to ICI. Indeed, the microbiota produces circulating metabolites that will subsequently act on immune system, the investigators hypothesized that plasma metabolic signature, reflecting a global microbiota function, could represent a predictive biomarker of response to ICI. METHODS: Monocentric prospective study. Primary objective is to identify baseline metabolic signature (metabolomics analysis by mass spectrometry) associated to ICI response. Secondary objectives are to link metabolic signature with microbiota composition (metagenomics analysis RNA 16S) and immune profile, and altogether with clinic response to ICI. The study will include 60 NSCLC patients treated by ICI in 1st, 2nd or 3rd line of treatment at the Grenoble Alpes University hospital (CHUGA) in 18 months. Patients that have received antibiotic or steroid treatment, 2 or 4 weeks before ICI initiation, respectively, will be excluded. Blood and feces will be collected prior to, at 2 months after ICI treatment initiation, and at 6 months or at progression. EXPECTED RESULTS: We expect to highlight a metabolic profile predictive of response to ICI. By identifying factors associated with early progression, we could avoid to treat potential non-responding patients. Moreover, by restoring a favorable microbiota, patients' ability to respond to these treatments might be restored.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Biomarcadores , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares/tratamiento farmacológico , Estudios Prospectivos
16.
Sci Rep ; 11(1): 14205, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244531

RESUMEN

Mistletoe (Viscum album L.) is used in German-speaking European countries in the field of integrative oncology linking conventional and complementary medicine therapies to improve quality of life. Various companies sell extracts, fermented or not, for injection by subcutaneous or intra-tumoral route with a regulatory status of anthroposophic medicinal products (European Medicinal Agency (EMA) assessment status). These companies as well as anthroposophical physicians argue that complex matrices composed of many molecules in mixture are necessary for activity and that the host tree of the mistletoe parasitic plant is the main determining factor for this matrix composition. The critical point is that parenteral devices of European mistletoe extracts do not have a standard chemical composition regulated by EMA quality guidelines, because they are not drugs, regulatory speaking. However, the mechanism of mistletoe's anticancer activity and its effectiveness in treating and supporting cancer patients are not fully understood. Because of this lack of transparency and knowledge regarding the matrix chemical composition, we undertook an untargeted metabolomics study of several mistletoe extracts to explore and compare their fingerprints by LC-(HR)MS(/MS) and 1H-NMR. Unexpectedly, we showed that the composition was primarily driven by the manufacturer/preparation method rather than the different host trees. This differential composition may cause differences in immunostimulating and anti-cancer activities of the different commercially available mistletoe extracts as illustrated by structure-activity relationships based on LC-MS/MS and 1H-NMR identifications completed by docking experiments. In conclusion, in order to move towards an evidence-based medicine use of mistletoe, it is a priority to bring rigor and quality, chemically speaking.

17.
Metabolites ; 11(2)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494144

RESUMEN

Pseudomonas aeruginosa (P.a) is one of the most critical antibiotic resistant bacteria in the world and is the most prevalent pathogen in cystic fibrosis (CF), causing chronic lung infections that are considered one of the major causes of mortality in CF patients. Although several studies have contributed to understanding P.a within-host adaptive evolution at a genomic level, it is still difficult to establish direct relationships between the observed mutations, expression of clinically relevant phenotypes, and clinical outcomes. Here, we performed a comparative untargeted LC/HRMS-based metabolomics analysis of sequential isolates from chronically infected CF patients to obtain a functional view of P.a adaptation. Metabolic profiles were integrated with expression of bacterial phenotypes and clinical measurements following multiscale analysis methods. Our results highlighted significant associations between P.a "metabotypes", expression of antibiotic resistance and virulence phenotypes, and frequency of clinical exacerbations, thus identifying promising biomarkers and therapeutic targets for difficult-to-treat P.a infections.

18.
Front Immunol ; 12: 742446, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567008

RESUMEN

Background: The SARS-CoV-2 infection triggers excessive immune response resulting in increased levels of pro-inflammatory cytokines, endothelial injury, and intravascular coagulopathy. The complement system (CS) activation participates to this hyperinflammatory response. However, it is still unclear which activation pathways (classical, alternative, or lectin pathway) pilots the effector mechanisms that contribute to critical illness. To better understand the immune correlates of disease severity, we performed an analysis of CS activation pathways and components in samples collected from COVID-19 patients hospitalized in Grenoble Alpes University Hospital between 1 and 30 April 2020 and of their relationship with the clinical outcomes. Methods: We conducted a retrospective, single-center study cohort in 74 hospitalized patients with RT-PCR-proven COVID-19. The functional activities of classical, alternative, and mannose-binding lectin (MBL) pathways and the antigenic levels of the individual components C1q, C4, C3, C5, Factor B, and MBL were measured in patients' samples during hospital admission. Hierarchical clustering with the Ward method was performed in order to identify clusters of patients with similar characteristics of complement markers. Age was included in the model. Then, the clusters were compared with the patient clinical features: rate of intensive care unit (ICU) admission, corticoid treatment, oxygen requirement, and mortality. Results: Four clusters were identified according to complement parameters. Among them, two clusters revealed remarkable profiles: in one cluster (n = 15), patients exhibited activation of alternative and lectin pathways and low antigenic levels of MBL, C4, C3, Factor B, and C5 compared to all the other clusters; this cluster had the higher proportion of patients who died (27%) and required oxygen support (80%) or ICU care (53%). In contrast, the second cluster (n = 19) presented inflammatory profile with high classical pathway activity and antigenic levels of complement components; a low proportion of patients required ICU care (26%) and no patient died in this group. Conclusion: These findings argue in favor of prominent activation of the alternative and MBL complement pathways in severe COVID-19, but the spectrum of complement involvement seems to be heterogeneous requiring larger studies.


Asunto(s)
COVID-19/inmunología , COVID-19/mortalidad , Lectina de Unión a Manosa de la Vía del Complemento , SARS-CoV-2 , Adulto , Anciano , Anciano de 80 o más Años , Proteínas del Sistema Complemento/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos
19.
Nat Commun ; 12(1): 3832, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158495

RESUMEN

Molecular networking connects mass spectra of molecules based on the similarity of their fragmentation patterns. However, during ionization, molecules commonly form multiple ion species with different fragmentation behavior. As a result, the fragmentation spectra of these ion species often remain unconnected in tandem mass spectrometry-based molecular networks, leading to redundant and disconnected sub-networks of the same compound classes. To overcome this bottleneck, we develop Ion Identity Molecular Networking (IIMN) that integrates chromatographic peak shape correlation analysis into molecular networks to connect and collapse different ion species of the same molecule. The new feature relationships improve network connectivity for structurally related molecules, can be used to reveal unknown ion-ligand complexes, enhance annotation within molecular networks, and facilitate the expansion of spectral reference libraries. IIMN is integrated into various open source feature finding tools and the GNPS environment. Moreover, IIMN-based spectral libraries with a broad coverage of ion species are publicly available.


Asunto(s)
Biología Computacional/métodos , Iones/metabolismo , Espectrometría de Masas/métodos , Redes y Vías Metabólicas , Metabolómica/métodos , Animales , Internet , Iones/química , Estructura Molecular , Reproducibilidad de los Resultados , Programas Informáticos
20.
J Biol Chem ; 284(40): 27687-700, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19635793

RESUMEN

DivIB(FtsQ), FtsL, and DivIC(FtsB) are enigmatic membrane proteins that are central to the process of bacterial cell division. DivIB(FtsQ) is dispensable in specific conditions in some species, and appears to be absent in other bacterial species. The presence of FtsL and DivIC(FtsB) appears to be conserved despite very low sequence conservation. The three proteins form a complex at the division site, FtsL and DivIC(FtsB) being associated through their extracellular coiled-coil region. We report here structural investigations by NMR, small-angle neutron and x-ray scattering, and interaction studies by surface plasmon resonance, of the complex of DivIB, FtsL, and DivIC from Streptococcus pneumoniae, using soluble truncated forms of the proteins. We found that one side of the "bean"-shaped central beta-domain of DivIB interacts with the C-terminal regions of the dimer of FtsL and DivIC. This finding is corroborated by sequence comparisons across bacterial genomes. Indeed, DivIB is absent from species with shorter FtsL and DivIC proteins that have an extracellular domain consisting only of the coiled-coil segment without C-terminal conserved regions (Campylobacterales). We propose that the main role of the interaction of DivIB with FtsL and DivIC is to help the formation, or to stabilize, the coiled-coil of the latter proteins. The coiled-coil of FtsL and DivIC, itself or with transmembrane regions, could be free to interact with other partners.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Ciclo Celular/química , Proteínas de la Membrana/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Espacio Extracelular/metabolismo , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Difracción de Neutrones , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Alineación de Secuencia , Solubilidad , Streptococcus pneumoniae/citología , Streptococcus pneumoniae/metabolismo , Resonancia por Plasmón de Superficie , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA